Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339180

RESUMEN

To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.


Asunto(s)
Acil-Butirolactonas , Espectroscopía de Terahertz , Acil-Butirolactonas/química , Simulación de Dinámica Molecular , Percepción de Quorum , Estructura Molecular , Lactonas
2.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562219

RESUMEN

Seed dormancy and germination are key events in plant development and are critical for crop production, and defects in seed germination or the inappropriate release of seed dormancy cause substantial losses in crop yields. Rice is the staple food for more than half of the world's population, and preharvest sprouting (PHS) is one of the most severe problems in rice production, due to a low level of seed dormancy, especially under warm and damp conditions. Therefore, PHS leads to yield loss and a decrease in rice quality and vitality. We reveal that mutation of OsbZIP09 inhibited rice PHS. Analysis of the expression of OsbZIP09 and its encoded protein sequence and structure indicated that OsbZIP09 is a typical bZIP transcription factor that contains conserved bZIP domains, and its expression is induced by ABA. Moreover, RNA sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analyses were performed and 52 key direct targets of OsbZIP09 were identified, including OsLOX2 and Late Embryogenesis Abundant (LEA) family genes, which are involved in controlling seed germination. Most of these key targets showed consistent changes in expression in response to abscisic acid (ABA) treatment and OsbZIP09 mutation. The data characterize a number of key target genes that are directly regulated by OsbZIP09 and contribute to revealing the molecular mechanism that underlies how OsbZIP09 controls rice seed germination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Germinación , Oryza/crecimiento & desarrollo , Latencia en las Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Semillas/genética
3.
Nat Commun ; 15(1): 4493, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802342

RESUMEN

Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Oryza , Latencia en las Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Latencia en las Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Amilosa/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Plantas Modificadas Genéticamente
4.
J Hazard Mater ; 459: 132026, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37473567

RESUMEN

Microfibers are the most common type of microplastics in freshwater environments. Anthropogenic climate stressors, such as freshwater acidification (FA), can interact with plastic pollution to disrupt freshwater ecosystems. However, the underlying mechanisms responsible for the interactive effects of microfibers and FA on aquatic organisms remain poorly understood. In this study, we investigated individual Daphnia magna-microbiota interactions affected by interactions between microfibers and FA (MFA). We found that the accumulated amount of microfibers in pH-treatment groups was significantly higher than in the control groups, resulting in negative consequences on reproduction, growth, and sex ratio. We also observed that MFA interactions induced immunity- and reproduction-related biological processes. In particular, the abundance of pathogenic bacteria increased only in MFA groups, indicating that MFA interactions can cause intestinal damage. Our integrated analysis of microbiomes and host transcriptomes revealed that synergistic adverse effects of MFAs are closely related to changes in microbial communities, suggesting that D. magna fitness and the microbial community are causally linked. These finding may help elucidate the toxicity mechanisms governing the responses of D. magna to microfibers and acidification interactions, and to host-microbiome-environment interactions.


Asunto(s)
Cladóceros , Microbiota , Contaminantes Químicos del Agua , Animales , Daphnia , Plásticos , Agua Dulce , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
5.
Mar Pollut Bull ; 194(Pt B): 115332, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37527615

RESUMEN

Because nanoplastics (NPs) can transport pollutants, the absorption of surrounding pollutants into NPs and their effects are important environmental issues. This study shows a combined effect of high concentrations of NPs and copper (Cu) in the marine rotifer Brachionus plicatilis. Co-exposure decreased the growth rate, reproduction, and lifespan. The highest level of NP ingestion was detected in the co-treated group, but the Cu concentration was higher in the Cu single-exposure group. ERK activation played a key role in the downstream cell signaling pathway activated by the interaction of NPs and Cu. The increased sensitivity of B. plicatilis to Cu could be due to the impairment of MXR function caused by a high concentration of NPs, which supports our in vivo experiment results. Our results show that exposure to NPs could induce the dysfunction of several critical molecular responses, weakening resistance to Cu and thereby increasing its physiological toxicity in B. plicatilis.


Asunto(s)
Contaminantes Ambientales , Rotíferos , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Microplásticos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA