Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Cell Sci ; 131(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29760279

RESUMEN

Dysregulation of the homeostatic balance of histone H3 di- and tri-methyl lysine 27 (H3K27me2/3) levels caused by the mis-sense mutation of histone H3 (H3K27M) is reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in patients with diffuse intrinsic pontine glioma (DIPG), dramatically attenuated the presence of 53BP1 (also known as TP53BP1) foci and the capability of non-homologous end joining (NHEJ) in human dermal fibroblasts. H3.1K27M mutant cells showed increased rates of genomic insertions/deletions and copy number variations, as well as an increase in p53-dependent apoptosis. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player in the choice of DNA repair pathway. H3.1K27M triggered the accumulation of FANCD2 on chromatin, suggesting an interaction between H3.1K27M and FANCD2. Interestingly, knockdown of FANCD2 in H3.1K27M cells recovered the number of 53BP1-positive foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the endogenous regulation of the H3.1K27M mutant in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Histonas/metabolismo , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/metabolismo , Línea Celular , Cromatina/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Fibroblastos , Inestabilidad Genómica , Glioma/genética , Glioma/metabolismo , Células HEK293 , Histonas/genética , Humanos , Metilación , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
2.
Nucleic Acids Res ; 45(3): 1144-1158, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180298

RESUMEN

Autophagy is an evolutionarily conserved cellular process that primarily participates in lysosome-mediated protein degradation. Although autophagy is a cytoplasmic event, how epigenetic pathways are involved in the regulation of autophagy remains incompletely understood. Here, we found that H2B monoubiquitination (H2Bub1) is down-regulated in cells under starvation conditions and that the decrease in H2Bub1 results in the activation of autophagy. We also identified that the deubiquitinase USP44 is responsible for the starvation-induced decrease in H2Bub1. Furthermore, the changes in H2Bub1 affect the transcription of genes involved in the regulation of autophagy. Therefore, this study reveals a novel epigenetic pathway for the regulation of autophagy through H2Bub1.


Asunto(s)
Autofagia/genética , Epigénesis Genética , Histonas/metabolismo , Ubiquitinación/genética , Animales , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Regulación hacia Abajo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Histonas/química , Histonas/genética , Humanos , Ratones , Modelos Biológicos , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , ADN Metiltransferasa 3B
3.
J Biol Chem ; 291(9): 4684-97, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26710852

RESUMEN

Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.


Asunto(s)
Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mitosis , Huso Acromático/enzimología , Acetilación/efectos de los fármacos , Sustitución de Aminoácidos , Resistencia a Medicamentos , Células HeLa , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microscopía Fluorescente , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Mutación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
5.
J Cell Sci ; 125(Pt 22): 5369-78, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956542

RESUMEN

Core histone modifications play an important role in chromatin remodeling and transcriptional regulation. Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the organ overgrowth induced by overexpression of insulin receptor (InR), phosphoinositide 3-kinase (PI3K) or S6 kinase (S6K), and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the overexpression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Acetilación , Animales , Tamaño Corporal , Tamaño de la Célula , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Femenino , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/deficiencia , Insulina/metabolismo , Masculino , Proteínas Nucleares/metabolismo , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Transcripción Genética
6.
J Biol Chem ; 287(49): 41469-80, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22982396

RESUMEN

It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.


Asunto(s)
Histonas/química , Lisina/química , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Transducción de Señal
7.
J Biol Chem ; 286(11): 9020-30, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21205821

RESUMEN

The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Proteínas de Drosophila/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Morfogénesis/fisiología , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/genética , Enzimas Ubiquitina-Conjugadoras/genética
8.
Cancer Lett ; 400: 18-29, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455245

RESUMEN

Lung cancer is one of the most lethal cancers due to its highly metastatic spreading. The motility of lung cancer cells is regulated by paracrine factors, such as TGF-ß, in the tumor microenvironment through the induction of epithelial-to-mesenchymal transition (EMT). The stability of microtubules is reported to be associated with the EMT process and the migration of cancer cells. Here, we observed that RCC1 domain-containing protein 1 (RCCD1) is highly expressed in non-small cell lung cancer (NSCLC) patients with poor prognosis, and RCCD1 is much higher expressed in tumor tissues compared with adjacent normal tissues. Depletion of RCCD1 using siRNAs significantly inhibits the migration of lung cancer cells. Subsequent studies reveal that the loss of RCCD1 results in upregulation of acetylated α-tubulin levels and stabilizes cytoskeletal microtubules. Mechanistically, we observed that RCCD1 modulates the stability of microtubules through interacting with JMJD5. Furthermore, RCCD1 depletion significantly attenuates the TGF-ß-induced EMT process, as assessed by altered expression of epithelial and mesenchymal markers (Occludin, Vimentin and Snail), and inhibits TGF-ß-induced cell migration. Collectively, these findings support RCCD1 as a novel regulator of TGF-ß-induced EMT in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Acetilación , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras/genética , Movimiento Celular/efectos de los fármacos , Biología Computacional , Bases de Datos Genéticas , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células HEK293 , Histona Demetilasas/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Microtúbulos/patología , Invasividad Neoplásica , Pronóstico , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/farmacología , Tubulina (Proteína)/metabolismo
9.
Chin Med J (Engl) ; 130(3): 309-317, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-28139514

RESUMEN

BACKGROUND: It is well documented that sevoflurane postconditioning (SP) has a significant myocardial protection effect. However, the mechanisms underlying SP are still unclear. In the present study, we investigated the hypothesis that the Pim-1 kinase played a key role in SP-induced cardioprotection by regulating dynamics-related protein 1 (Drp1). METHODS: A Langendorff model was used in this study. Seventy-two rats were randomly assigned into six groups as follows: CON group, ischemia reperfusion (I/R) group, SP group , SP+proto-oncogene serine/threonine-protein kinase 1 (Pim-1) inhibitor II group, SP+dimethylsufoxide group, and Pim-1 inhibitor II group (n = 12, each). Hemodynamic parameters and infarct size were measured to reflect the extent of myocardial I/R injury. The expressions of Pim-1, B-cell leukemia/lymphoma 2 (Bcl-2) and cytochrome C (Cyt C) in cytoplasm and mitochondria, the Drp1 in mitochondria, and the total Drp1 and p-Drp1ser637 were measured by Western blotting. In addition, transmission electron microscope was used to observe mitochondrial morphology. The experiment began in October 2014 and continued until July 2016. RESULTS: SP improved myocardial I/R injury-induced hemodynamic parametric changes, cardiac function, and preserved mitochondrial phenotype and decreased myocardial infarct size (24.49 ± 1.72% in Sev group compared with 41.98 ± 4.37% in I/R group; P< 0.05). However, Pim-1 inhibitor II significantly (P < 0.05) abolished the protective effect of SP. Western blotting analysis demonstrated that, compared with I/R group, the expression of Pim-1 and Bcl-2 in cytoplasm and mitochondria as well as the total p-Drp1ser637 in Sev group (P < 0.05) were upregulated. Meanwhile, SP inhibited Drp1 compartmentalization to the mitochondria followed by a reduction in the release of Cyt C. Pretreatment with Pim-1 inhibitor II significantly (P < 0.05) abolished SP-induced Pim-1/p-Drp1ser637 signaling activation. CONCLUSIONS: These findings suggested that SP could attenuate myocardial ischemia-reperfusion injury by increasing the expression of the Pim-1 kinase. Upregulation of Pim-1 might phosphorylate Drp1 and prevent extensive mitochondrial fission through Drp1 cytosolic sequestration.


Asunto(s)
Dinaminas/metabolismo , Poscondicionamiento Isquémico/métodos , Éteres Metílicos/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Animales , Hemodinámica/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Quinazolinonas/farmacología , Ratas , Ratas Sprague-Dawley , Sevoflurano
10.
Cell Cycle ; 15(21): 2980-2991, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27715397

RESUMEN

Microtubules play essential roles in mitosis, cell migration, and intracellular trafficking. Drugs that target microtubules have demonstrated great clinical success in cancer treatment due to their capacity to impair microtubule dynamics in both mitotic and interphase stages. In a previous report, we demonstrated that JMJD5 associated with mitotic spindle and was required for proper mitosis. However, it remains elusive whether JMJD5 could regulate the stability of cytoskeletal microtubules and whether it affects the efficacy of microtubule-targeting agents. In this study, we find that JMJD5 localizes not only to the nucleus, a fraction of it also localizes to the cytoplasm. JMJD5 depletion decreases the acetylation and detyrosination of α-tubulin, both of which are markers of microtubule stability. In addition, microtubules in JMJD5-depleted cells are more sensitive to nocodazole-induced depolymerization, whereas JMJD5 overexpression increases α-tubulin detyrosination and enhances the resistance of microtubules to nocodazole. Mechanistic studies revealed that JMJD5 regulates MAP1B protein levels and that MAP1B overexpression rescued the microtubule destabilization induced by JMJD5 depletion. Furthermore, JMJD5 depletion significantly promoted apoptosis in cancer cells treated with the microtubule-targeting anti-cancer drugs vinblastine or colchicine. Together, these findings suggest that JMJD5 is required to regulate the stability of cytoskeletal microtubules and that JMJD5 depletion increases the susceptibility of cancer cells to microtubule-destabilizing agents.


Asunto(s)
Antineoplásicos/farmacología , Eliminación de Gen , Histona Demetilasas/metabolismo , Microtúbulos/metabolismo , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
11.
Oncotarget ; 6(30): 29599-613, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26336826

RESUMEN

Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Western Blotting , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Microscopía Confocal , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
12.
Mol Cell Biol ; 35(2): 406-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384975

RESUMEN

Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.


Asunto(s)
Autofagia/genética , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Reparación del ADN por Recombinación/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Línea Celular , Homólogo de la Proteína Chromobox 5 , Humanos
13.
Cell Signal ; 25(8): 1689-98, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23628702

RESUMEN

hMOF is the major acetyltransferase of histone H4 lysine 16 (H4K16) in humans, but its biological function is not well understood. In this study, hMOF was found to be more frequently highly expressed in non-small cell lung cancer (NSCLC) than corresponding normal tissues (P < 0.001). In addition, up-regulation of H4K16 acetylation was also more frequent in NSCLC than normal tissues (P = 0.002). Furthermore, hMOF promotes the cell proliferation, migration and adhesion of NSCLC cell lines. Microarray analysis and chromatin immunoprecipitation (ChIP) assays suggest that hMOF modulates proliferation and metastasis by regulating histone H4K16 acetylation at the promoter regions of downstream target genes. Moreover, hMOF promotes S phase entry via Skp2. These findings suggest that hMOF contributes to NSCLC tumorigenesis.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación , Carcinogénesis , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histonas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Fase S , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Regulación hacia Arriba
14.
Mol Cell Biol ; 32(2): 576-87, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083959

RESUMEN

Maintaining an appropriate cellular concentration of p53 is critical for cell survival and normal development in various organisms. In this study, we provide evidence that the human E2 ubiquitin-conjugating enzyme RAD6 plays a critical role in regulating p53 protein levels under both normal and stress conditions. Knockdown and overexpression of RAD6 affected p53 turnover and transcription. We showed that RAD6 can form a ternary complex with MDM2 and p53 that contributes to the degradation of p53. Chromatin immunoprecipitation (ChIP) analysis showed that RAD6 also binds to the promoter and coding regions of the p53 gene and modulates the levels of H3K4 and K79 methylation on local chromatin. When the cells were exposed to stress stimuli, the RAD6-MDM2-p53 ternary complex was disrupted; RAD6 was then recruited to the chromatin of the p53 gene, resulting in an increase in histone methylation and p53 transcription. Further studies showed that stress-induced p53 transcriptional activation, cell apoptosis, and disrupted cell cycle progression are all RAD6 dependent. Overall, this work demonstrates that RAD6 regulates p53 levels in a "yin-yang" manner through a combination of two distinct mechanisms in mammalian cells.


Asunto(s)
Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Genes p53 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA