Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38864216

RESUMEN

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Asunto(s)
Cardiomegalia , Ratones Noqueados , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevención & control , Cardiomegalia/patología , Ratones Endogámicos C57BL , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/prevención & control , Remodelación Ventricular
2.
Circulation ; 147(8): 669-685, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36591786

RESUMEN

BACKGROUND: Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS: Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS: Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-ß signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS: We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-ß signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.


Asunto(s)
Aterosclerosis , Factor de Crecimiento Transformador beta , Ratones , Animales , Factores de Crecimiento de Fibroblastos , Apolipoproteínas E , Aterosclerosis/genética , Receptores de Factores de Crecimiento de Fibroblastos , Factores de Crecimiento Transformadores , Ubiquitinas
3.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37905452

RESUMEN

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , ARN Interferente Pequeño/metabolismo , Biosíntesis de Proteínas , Proliferación Celular , Regeneración , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
4.
EMBO J ; 39(16): e104324, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32614092

RESUMEN

Full differentiation potential along with self-renewal capacity is a major property of pluripotent stem cells (PSCs). However, the differentiation capacity frequently decreases during expansion of PSCs in vitro. We show here that transient exposure to a single microRNA, expressed at early stages during normal development, improves the differentiation capacity of already-established murine and human PSCs. Short exposure to miR-203 in PSCs (miPSCs) induces a transient expression of 2C markers that later results in expanded differentiation potency to multiple lineages, as well as improved efficiency in tetraploid complementation and human-mouse interspecies chimerism assays. Mechanistically, these effects are at least partially mediated by direct repression of de novo DNA methyltransferases Dnmt3a and Dnmt3b, leading to transient and reversible erasure of DNA methylation. These data support the use of transient exposure to miR-203 as a versatile method to reset the epigenetic memory in PSCs, and improve their effectiveness in regenerative medicine.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Animales , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , MicroARNs/genética , ADN Metiltransferasa 3B
5.
Arterioscler Thromb Vasc Biol ; 43(1): e1-e10, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453280

RESUMEN

Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.


Asunto(s)
Vasos Linfáticos , Enfermedades Metabólicas , Infarto del Miocardio , Humanos , Linfangiogénesis , Vasos Linfáticos/metabolismo , Corazón , Infarto del Miocardio/metabolismo , Enfermedades Metabólicas/metabolismo
6.
Environ Sci Technol ; 58(1): 219-230, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38152998

RESUMEN

Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (-0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = -0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = -0.328 and -0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = -0.198) < herbivores (ln RRΔ = -0.320) < carnivores (ln RRΔ = -0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Agua de Mar , Concentración de Iones de Hidrógeno , Organismos Acuáticos , Cadena Alimentaria , Mercurio/análisis , Biota , Contaminantes Químicos del Agua/análisis
7.
Macromol Rapid Commun ; : e2400322, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819032

RESUMEN

Bioinspired microdevices have made significant strides in various applications including human motion and health detection. However, facile and highly efficient fabrication approach of flexible pressure sensors remains a great challenge. Herein, inspired by the gecko's foot structure, a flexible pressure sensor with microdomes structure is fabricated by tip-assisted on-demand electrohydrodynamic jet (EHD-jet) printing method. Ascribed to the interlocking electrodes with microdome structure, 3D deformation rates are substantially enlarged. When the microdromes structure is under pressure, the resistivity of carbon nanotubes film coated on the surface of microdomes structure will change remarkably. By using the combined effect of assisted tip and ring focusing electrode, the influence and constraints on microstructure fabrication caused by substrate material and morphology are minimized. The desired uniform structures can be adjusted rapidly by changing the printing parameters and liquid properties. High length-height ratio (0.64) of microdomes enhances sensitivity, with minimum detection limit is 2 Pa and response time is 40 ms. Finally, the bionic flexible sensor indicated excellent performance in capable of detecting pressure, sound vibrations and human motion. This work presents a new method for high-efficiency fabrication micro-nano patterns for flexible sensors inspired, which could be used in wearable tech and health monitoring.

8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33568529

RESUMEN

Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.


Asunto(s)
Amiloide/metabolismo , Núcleo Celular/metabolismo , Respuesta al Choque Térmico , Amiloide/genética , Hipoxia de la Célula , Citoplasma/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Células MCF-7 , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribosomas/metabolismo
9.
Ecotoxicol Environ Saf ; 272: 116083, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350220

RESUMEN

Various strategies have been explored to mitigate the impact of harmful algal blooms (HABs). While chemical and physical methods have traditionally been employed to regulate microalgal growth, their prolonged adverse effects on the ecosystem are a cause for concern. Recognizing the integral role of macroalgae within the ecosystem, this study reveals the anti-algal properties of solvent-based extracts derived from the red macroalga Pyropia haitanensis as a means of preventing microalgal blooms. In our investigation, we initially assessed the growth-inhibitory effects of methanol and acetone extracts from P. haitanensis on five microalgae known to contribute to bloom-formation. Significantly reduced growth was observed in all microalgal species when inoculated with both methanol and acetone extracts. Further analysis revealed the effectiveness of the methanol extract (ME), and further fractionation with petroleum ether (PE), ethyl acetate (EA), and n-butanol (NB) for testing against Skeletonema costatum and Pseudo-nitzschia pungens. The methanol fractions exhibited strong inhibition, resulting in the complete elimination of both microalgae after 96 hours of exposure to PE, EA, and NB extracts. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the ME and its solvent fractions identified 49 confirmed compounds. These compounds are likely potential contributors to the observed inhibition of microalgal growth. In conclusion, our findings suggest that solvent extracts from P. haitanensis possess substantial potential for the control of HABs, offering a promising avenue for further research and application in ecosystem management.


Asunto(s)
Microalgas , Rhodophyta , Algas Marinas , Solventes , Ecosistema , Metanol , Acetona , Floraciones de Algas Nocivas
10.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931764

RESUMEN

The quality of aerial remote sensing imaging is heavily impacted by the thermal distortions in optical cameras caused by temperature fluctuations. This paper introduces a lumped parameter thermal network (LPTN) model for the optical system of aerial cameras, aiming to serve as a guideline for their thermal design. By optimizing the thermal resistances associated with convection and radiation while considering the camera's unique internal architecture, this model endeavors to improve the accuracy of temperature predictions. Additionally, the proposed LPTN framework enables the establishment of a heat leakage network, which offers a detailed examination of heat leakage paths and rates. This analysis offers valuable insights into the thermal performance of the camera, thereby guiding the refinement of heating zones and the development of effective active control strategies. Operating at a total power consumption of 26 W, the thermal system adheres to the low-power limit. Experimental data from thermal tests indicate that the temperatures within the optical system are maintained consistently between 19 °C and 22 °C throughout the flight, with temperature gradients remaining below 3 °C, satisfying the temperature requirements. The proposed LPTN model exhibits swiftness and efficacy in determining thermal characteristics, significantly facilitating the thermal design process and ensuring optimal power allocation for aerial cameras.

11.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339055

RESUMEN

MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.


Asunto(s)
MicroARNs , Distrofia Muscular de Duchenne , Humanos , Músculo Esquelético/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciación Celular/genética , Distrofia Muscular de Duchenne/genética
12.
Semin Cell Dev Biol ; 118: 150-162, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284952

RESUMEN

In the past two decades, thousands of non-coding RNAs (ncRNAs) have been discovered, annotated, and characterized in nearly every tissue under both physiological and pathological conditions. Here, we will focus on the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ischemic heart disease (IHD), which remains the leading cause of morbidity and mortality in humans-resulting in 8.9 million deaths annually. Cardiomyocyte (CM) proliferation, differentiation, and survival in addition to neovascularization of injured tissues and the prevention of fibrosis are commonly regarded as critically important for the recovery of the heart following myocardial infarction (MI). An abundance of evidence has been accumulated to show ncRNAs participate in cardiac recovery after MI. Because miRNAs are important regulators of cardiac regeneration, the therapeutic potential of at least five of these molecules has been assessed in large animal models of human IHD. In particular, miRNA-based interventions based on miR-132 and miR-92a inhibition in related diseases have displayed favorable outcomes that have provided the impetus for miRNA-based clinical trials for IHD. At the same time, the functional roles of lncRNAs and circRNAs in cardiac regeneration are also being explored. In the present review, we will summarize the latest ncRNA studies aimed at reversing damage to the ischemic heart and discuss the therapeutic potential of targeting miRNAs, lncRNAs, and circRNAs to stimulate cardiac regeneration.


Asunto(s)
Miocitos Cardíacos/metabolismo , ARN no Traducido/metabolismo , Regeneración/genética , Animales , Humanos , Neovascularización Fisiológica
13.
Stem Cells ; 40(2): 133-148, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257186

RESUMEN

The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of ß-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/ß-catenin signaling.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , beta Catenina , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacología , Diferenciación Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Ratones , Desarrollo de Músculos/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
14.
Mol Ther ; 30(2): 898-914, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34400329

RESUMEN

Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas Co-Represoras , Distrofina/metabolismo , Corazón , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Proteínas Nucleares
15.
Proc Natl Acad Sci U S A ; 117(32): 19254-19265, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719146

RESUMEN

The appropriate arrangement of myonuclei within skeletal muscle myofibers is of critical importance for normal muscle function, and improper myonuclear localization has been linked to a variety of skeletal muscle diseases, such as centronuclear myopathy and muscular dystrophies. However, the molecules that govern myonuclear positioning remain elusive. Here, we report that skeletal muscle-specific CIP (sk-CIP) is a regulator of nuclear positioning. Genetic deletion of sk-CIP in mice results in misalignment of myonuclei along the myofibers and at specialized structures such as neuromuscular junctions (NMJs) and myotendinous junctions (MTJs) in vivo, impairing myonuclear positioning after muscle regeneration, leading to severe muscle dystrophy in mdx mice, a mouse model of Duchenne muscular dystrophy. sk-CIP is localized to the centrosome in myoblasts and relocates to the outer nuclear envelope in myotubes upon differentiation. Mechanistically, we found that sk-CIP interacts with the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex and the centriole Microtubule Organizing Center (MTOC) proteins to coordinately modulate myonuclear positioning and alignment. These findings indicate that sk-CIP may function as a muscle-specific anchoring protein to regulate nuclear position in multinucleated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miopatías Estructurales Congénitas/fisiopatología , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Núcleo Celular/genética , Proteínas Co-Represoras , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/fisiopatología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas Nucleares/genética , Especificidad de Órganos
16.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240101

RESUMEN

Lampriform fishes (Lampriformes), which primarily inhabit deep-sea environments, are large marine fishes varying from the whole-body endothermic opah to the world's longest bony fish-giant oarfish, with species morphologies varying from long and thin to deep and compressed, making them an ideal model for studying the adaptive radiation of teleost fishes. Moreover, this group is important from a phylogenetic perspective owing to their ancient origins among teleosts. However, knowledge about the group is limited, which is, at least partially, due to the dearth of recorded molecular data. This study is the first to analyze the mitochondrial genomes of three lampriform species (Lampris incognitus, Trachipterus ishikawae, and Regalecus russelii) and infer a time-calibrated phylogeny, including 68 species among 29 orders. Our phylomitogenomic analyses support the classification of Lampriformes as monophyletic and sister to Acanthopterygii; hence, addressing the longstanding controversy regarding the phylogenetic status of Lampriformes among teleosts. Comparative mitogenomic analyses indicate that tRNA losses existed in at least five Lampriformes species, which may reveal the mitogenomic structure variation associated with adaptive radiation. However, codon usage in Lampriformes did not change significantly, and it is hypothesized that the nucleus transported the corresponding tRNA, which led to function substitutions. The positive selection analysis revealed that atp8 and cox3 were positively selected in opah, which might have co-evolved with the endothermic trait. This study provides important insights into the systematic taxonomy and adaptive evolution studies of Lampriformes species.


Asunto(s)
Genoma Mitocondrial , Animales , Filogenia , Peces/genética , ARN de Transferencia/genética
17.
Int J Mol Sci ; 24(16)2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629051

RESUMEN

Obesity is a growing public health problem associated with increased risk of type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD) and cancer. Here, we identify microRNA-22 (miR-22) as an essential rheostat involved in the control of lipid and energy homeostasis as well as the onset and maintenance of obesity. We demonstrate through knockout and transgenic mouse models that miR-22 loss-of-function protects against obesity and hepatic steatosis, while its overexpression promotes both phenotypes even when mice are fed a regular chow diet. Mechanistically, we show that miR-22 controls multiple pathways related to lipid biogenesis and differentiation. Importantly, genetic ablation of miR-22 favors metabolic rewiring towards higher energy expenditure and browning of white adipose tissue, suggesting that modulation of miR-22 could represent a viable therapeutic strategy for treatment of obesity and other metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Homeostasis , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , MicroARNs/genética , Lípidos
18.
Entropy (Basel) ; 25(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37190435

RESUMEN

Accurate wind power prediction can increase the utilization rate of wind power generation and maintain the stability of the power system. At present, a large number of wind power prediction studies are based on the mean square error (MSE) loss function, which generates many errors when predicting original data with random fluctuation and non-stationarity. Therefore, a hybrid model for wind power prediction named IVMD-FE-Ad-Informer, which is based on Informer with an adaptive loss function and combines improved variational mode decomposition (IVMD) and fuzzy entropy (FE), is proposed. Firstly, the original data are decomposed into K subsequences by IVMD, which possess distinct frequency domain characteristics. Secondly, the sub-series are reconstructed into new elements using FE. Then, the adaptive and robust Ad-Informer model predicts new elements and the predicted values of each element are superimposed to obtain the final results of wind power. Finally, the model is analyzed and evaluated on two real datasets collected from wind farms in China and Spain. The results demonstrate that the proposed model is superior to other models in the performance and accuracy on different datasets, and this model can effectively meet the demand for actual wind power prediction.

19.
J Environ Sci (China) ; 124: 156-164, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182126

RESUMEN

High phosphorus steel slag and carbonized rice husk are two common wastes characterized by high generation and low secondary use values. Through the reduction of high phosphorus steel slag by biomass, both wastes were fully utilized, thus reducing the negative impact on the environment. In this study, variables such as temperature, time, and amount of reactants were changed to determine the optimal conditions for the reaction of steel slag with carbonized rice husk at high temperatures. The actual amount of reducing agent consumed during the reduction was significantly greater than that predicted by theoretical calculations. Adding three carbon equivalent of carbonized rice husk and maintaining at 1500°C for 30 min could remove 79.25% of P2O5 in the slag. By modeling the material cycle in which high phosphorus steel slag was treated with biomass, the product could be used for crop growth. Meanwhile, the reduced iron and residual steel slag can be used to make steel again, thereby leading to a sharp reduction in fossil fuel usage and greenhouse gas emissions in this process.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Carbono , Combustibles Fósiles , Residuos Industriales , Hierro , Fósforo , Sustancias Reductoras , Acero
20.
Cell Physiol Biochem ; 56(3): 293-309, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35781359

RESUMEN

BACKGROUND/AIMS: An obesogenic diet (high fat and sugar, low fiber) is associated with an increased risk for metabolic and cardiovascular disorders. Previous studies have demonstrated that epigenetic changes can modify gene transcription and protein function, playing a key role in the development of several diseases. The methyltransferase Set7 methylates histone and non-histone proteins, influencing diverse biological and pathological processes. However, the functional role of Set7 in obesity-associated metabolic and cardiovascular complications is unknown. METHODS: Wild type and Set7 knockout female mice were fed a normal diet or an obesogenic diet for 12 weeks. Body weight gain and glucose tolerance were measured. The 3T3-L1 cells were used to determine the role of Set7 in white adipogenic differentiation. Cardiac morphology and function were evaluated by histology and echocardiography. An ex vivo Langendorff perfusion system was used to model cardiac ischemia/reperfusion (I/R). RESULTS: Here, we report that Set7 protein levels were enhanced in the heart and perigonadal adipose tissue (PAT) of female mice fed an obesogenic diet. Significantly, loss of Set7 prevented obesogenic diet-induced glucose intolerance in female mice although it did not affect the obesogenic diet-induced increase in body weight gain and adiposity in these animals, nor did Set7 inhibition change white adipogenic differentiation in vitro. In addition, loss of Set7 prevented the compromised cardiac functional recovery following ischemia and reperfusion (I/R) injury in obesogenic diet-fed female mice; however, deletion of Set7 did not influence obesogenic diet-induced cardiac hypertrophy nor the hemodynamic and echocardiographic parameters. CONCLUSION: These data indicate that Set7 plays a key role in obesogenic diet-induced glucose intolerance and compromised myocardial functional recovery after I/R in obese female mice.


Asunto(s)
Intolerancia a la Glucosa , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Isquemia , Ratones , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Reperfusión/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA