Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 58(9): 4281-4290, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38391182

RESUMEN

Particulate brown carbon (BrC) plays a crucial role in the global radiative balance due to its ability to absorb light. However, the effect of molecular formation on the light absorption properties of BrC remains poorly understood. In this study, atmospheric BrC samples collected from six Chinese megacities in winter and summer were characterized through ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap MS) and light absorption measurements. The average values of BrC light absorption coefficient at a wavelength of 365 nm (babs365) in winter were approximately 4.0 times higher than those in summer. Nitrogen-containing organic molecules (CHNO) were identified as critical components of light-absorbing substances in both seasons, underscoring the importance of N-addition in BrC. These nitrogen-containing BrC chromophores were more closely related to nitro-containing compounds originating from biomass burning and nitrogen oxides (NOx)/nitrate (NO3-) reactions in winter. In summer, they were related to reduced N-containing compounds formed in ammonia (NH3)/ammonium (NH4+) reactions. The NH3/NH4+-mediated reactions contributed more to secondary BrC in summer than winter, particularly in southern cities. Compared with winter, the higher O/Cw, lower molecule conjugation indicator (double bond equivalent, DBE), and reduced BrC babs365 in summer suggest a possible bleaching mechanism during the oxidation process. These findings strengthen the connection between molecular composition and the light-absorbing properties of BrC, providing insights into the formation mechanisms of BrC chromophores across northern and southern Chinese cities in different seasons.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Ciudades , Nitrógeno/análisis , Aerosoles/análisis , Carbón Mineral/análisis , Nitrocompuestos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis
2.
Ecotoxicol Environ Saf ; 224: 112680, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34418851

RESUMEN

PM2.5 Road dust samples were collected from 10 representative cities in southern and northern China for examination of chemical components and oxidative stress levels in A549 cells. Downtown road dust was abundance of heavy metals, EC and PAHs compared to nondowntown road dust. Source apportionment also revealed the relative higher contribution of vehicle emission to downtown (35.8%) than nondowntown road dust (25.5%). Consequently, downtown road dust induced much higher intracellular reactive oxidative species (ROS) levels than that from nondowntown (p < 0.05). This study highlights that the ROS-inducing capacity of road dust in China is lower at lower latitudes, which resulted in a significantly higher ROS-inducing capacity of road dust from northern cities than southern ones. Hotspot analysis demonstrated that heavy metals (i.e., Cr, Zn, Cu and Pb) in road dust were the most closely associated with ROS production in A549 cells. Vehicle emission and combustion emission in road dust were identified to be correlated with cellular ROS production. The findings highlight the ROS-inducing effect of PM2.5 road dust and also serve as a reference to make the targeted solutions for urban road dust pollution control, especially from a public health perspective.

3.
Environ Pollut ; 363(Pt 1): 125075, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369870

RESUMEN

Water-soluble species are the main components of particulate matters (PMs), which have important impacts on visibility, climate change and human health. Here, personal exposure (PE) to size-resolved PMs from housewives using different solid fuels (biomass and coal) was collected during winter in rural Yuncheng city, Fenwei Plain, China. The concentrations of water-soluble organic carbon (WSOC) and reactive oxygen species (ROS) were higher in the biomass group than coal group, whereas the concentrations of water-soluble inorganic ions and water-soluble nitrogen were higher in the coal group than biomass group. Almost all measured water-soluble components in both groups showed a pattern of increasing concentration with decreasing particle size, with more than 50% of WSOC and water-soluble total nitrogen (WSTN) enriched in PM0.25. The Pearson correlation result was in general agreement with the relationship between water-soluble components and ROS found by random forest model. There was a strong positive correlation between ROS and WSOC in PMs in the coal group, especially in PMs <0.25 µm, which may be due to the emission of a large number of transition metals chelated with WSOC from coal combustion. The contribution of Cl- and F- to ROS was greater in the biomass group. NO2- in both coal and biomass groups had a decent positive effect on ROS generation. The strongest positive linear correlation (R = 0.95) between ROS and K+ in total suspended particulates in the biomass group, whereas there was almost no contribution of K+ to ROS when particle size was distinguished or in random forest model, which reflects the specificity of K+ in inducing ROS. The present study provides new insights for a deeper exploration of the relationship between water-soluble components and oxidative potential in PE PMs from domestic combustion sources.

4.
Toxics ; 11(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37505602

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and their derivatives have received extensive attention due to their negative effects on the environment and on human health. However, few studies have performed comprehensive assessments of PAHs emitted from pesticide factories. This study assessed the concentration, composition, and health risk of 52 PM2.5-bound PAHs during the daytime and nighttime in the vicinity of a typical pesticide factory. The total concentration of 52 PAHs (Σ52PAHs) ranged from 53.04 to 663.55 ng/m3. No significant differences were observed between daytime and nighttime PAH concentrations. The average concentrations of twenty-two parent PAHs, seven alkylated PAHs, ten oxygenated PAHs, and twelve nitrated PAHs were 112.55 ± 89.69, 18.05 ± 13.76, 66.13 ± 54.79, and 3.90 ± 2.24 ng/m3, respectively. A higher proportion of high-molecular-weight (4-5 rings) PAHs than low-molecular-weight (2-3 rings) PAHs was observed. This was likely due to the high-temperature combustion of fuels. Analysis of diagnostic ratios indicated that the PAHs were likely derived from coal combustion and mixed sources. The total carcinogenic equivalent toxicity ranged from 15.93 to 181.27 ng/m3. The incremental lifetime cancer risk from inhalation, ingestion, and dermal contact with the PAHs was 2.33 × 10-3 for men and 2.53 × 10-3 for women, and the loss of life expectancy due to the PAHs was 11,915 min (about 0.023 year) for men and 12,952 min (about 0.025 year) for women. These results suggest that long-term exposure to PM2.5 emissions from a pesticide factory has significant adverse effects on health. The study results support implementing the characterization of PAH emissions from pesticide factories and provides a scientific basis for optimizing the living environment around pesticide factories.

5.
J Hazard Mater ; 424(Pt A): 127369, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879564

RESUMEN

Low-carbon stabilization/solidification (S/S) is of increasing importance as an option for the treatment of municipal solid waste incineration fly ash (MIFA). This study tailored four binders (e.g., ordinary Portland cement (OPC), calcium aluminate cement (CAC), phosphate-modified OPC, and phosphate-modified CAC) for S/S of MIFA and evaluated the cytotoxicity of treated MIFA by using A549 cell-based in-vitro assay. After S/S treatment, the leachability of Cr, Cu, Zn and Pb from MIFA decreased by 76.1%, 93.4%, 69.6%, and 85.5%, respectively. Spectroscopic analysis indicated that the hydration products determined the immobilization efficiencies of various binders, and strong bonding between metallic cations and phosphate enhanced the immobilization efficiency. The treated MIFA showed significantly lower cellular reactive oxygen species (ROS)-inducing abilities than original MIFA, in which with phosphate-modified OPC treated MIFA showed the lowest ROS levels. Intracellular ROS and multicytotoxicity results also revealed that the treated MIFA not only decreased the cytotoxicity-inducing capability but also enhanced the tolerant dosage of cytotoxicity, in which phosphate-modified S/S treatments showed more effective mitigation (25% less cytotoxicity) than plain cement treatments due to the high-efficiency immobilization of potentially toxic elements. This study develops a pioneering assessment protocol to measure the success of sustainable treatment of MIFA in human health perspective.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Carbono , Ceniza del Carbón/toxicidad , Humanos , Incineración , Metales Pesados/análisis , Material Particulado , Residuos Sólidos/análisis
6.
Environ Pollut ; 285: 117503, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34090071

RESUMEN

Incomplete combustion of solid fuels (animal dung and bituminous coal) is a common phenomenon during residential cooking and heating in the Qinghai-Tibetan Plateau (QTP), resulting in large amounts of pollutants emitted into the atmosphere. This study investigated the pollutant emissions from six burning scenarios (heating and cooking with each of the three different fuels: yak dung, sheep dung, and bitumite) in the QTP's pastoral dwellings. Target pollutants such as carbon monoxide (CO), gas-phase polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), fine particles (PM2.5, particulate matter with an aerodynamic diameter < 2.5 µm), carbonaceous aerosols, water-soluble ions, and particle-phase PAHs were investigated. Emission factors (EFs) (mean ± standard deviation) of PM2.5 from the six scenarios were in the range of 1.21 ± 0.47-7.03 ± 1.95 g kg-1, of which over 60% mass fractions were carbonaceous aerosols. The ratio of organic carbon to elemental carbon ranged from 9.6 ± 2.7-33.4 ± 11.5 and 81.7 ± 30.4-91.9 ± 29.0 for dung and bitumite burning, respectively. These values were much larger than those reported in the literature, likely because of the region's high altitudes-where the oxygen level is approximately 65% of that at the sea level-thus providing a deficient air supply to stoves. However, the toxicity and carcinogenicity of PAHs emitted from solid fuel combustion in the QTP are significant, despite a slightly lower benzo(a)pyrene-equivalent carcinogenic potency (Bapeq) in this study than in the literature. The gas-to-particle partitioning coefficient of PAHs and VOC emission profiles in the QTP differed significantly from those reported for other regions in the literature. More attention should be paid to the emissions of PAH derivatives (oxygenated PAHs and nitro-PAHs), considering their enhanced light-absorbing ability and high BaPeq from solid fuel combustion in the QTP.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Animales , Culinaria , Gases , Calefacción , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ovinos , Tibet
7.
Geohealth ; 5(5): e2021GH000411, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34036209

RESUMEN

Bioaerosols have a major negative effect on air quality and on public health by causing the spread of diseases. This study evaluated the bioaerosol composition and variation in a semi-arid megacity of northwest China from October 2019 to January 2020 using an Andersen six-stage impactor sampler. The size distribution, diurnal variations of the concentrations of airborne bacteria, airborne fungi, and total airborne microbes (TAM) were investigated in autumn and winter. The mean concentrations of airborne bacteria, fungi, and TAM were 523.5 ± 301.1 colony-forming units (CFU)/m3, 1318.9 ± 447.8 CFU/m3, and (7.25 ± 1.90) × 106 cells/m3, respectively, in autumn and 581 ± 305.4 CFU/m3, 1234.4 ± 519.9 CFU/m3, and (5.96 ± 1.65) × 106 cells/m3, respectively, in winter. The mean bioaerosol concentrations were slightly higher on nonhaze days than on haze days, but the difference was not statistically significant. Higher ambient particulate matter levels and atmospheric oxidation capacity inhibited bacteria survival. The diurnal maximum bioaerosol concentration was observed in the morning in autumn, whereas in winter, bioaerosols did not exhibit such a distribution, the impact of human activities on bioaerosols was still uncertain. The size of airborne bacteria exhibited a bimodal distribution, whereas a unimodal pattern was observed for fungi and TAM. Most bacteria, fungi, and TAM were distributed in the respirable ranges from trachea and primary bronchi to alveoli, indicating that bioaerosols have a high risk of being inhaled and causing respiratory diseases in Xi'an.

8.
Sci Total Environ ; 776: 146014, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652308

RESUMEN

Humic-like substances (HULIS) in PM2.5 emitted from biomass burning (BB), including maize cob, wheat straw, maize straw, wood branch, and wood, in a traditional "Heated Kang" were investigated. The relative abundances, optical properties, chemical functional groups, and molecular components in HULIS were characterized using total organic carbon (TOC) analyzer, ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FT-IR), and Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR/MS), respectively. The emission factors (EF) of HULIS-C (in term of carbon weight, EFHULIS-C) from BB were in the range of 0.83 to 5.17 g/kg fuel, with a mean value of 1.93 ± 1.31 g/kg fuel. The HULIS-C accounted for 15.0-37.8% and 9.1-12.6% of fractions in organic carbon (OC) and PM2.5, respectively, suggesting that BB is an important emission source of atmospheric HULIS. The FT-IR spectra showed BB HULIS mainly contain O-containing, aliphatic CH, and aromatic CC functional groups. The presences of carboxyl group and OH band demonstrated the uniqueness of maize straw and wood burning. Moreover, the higher ratio of CH3 and -CH2 groups could be used to distinguish the wood branches from the maize cob. CHO and CHON were much dominant in BB HULIS, which accounted for 44.6-47.6% and 50.1-54.2%, respectively, to the total molecular mass. The positive correlation between MAE365 and AAE in term of number concentration of CHNO implied that the CHNO species could greatly influence on the light absorption properties of the BB HULIS. The CHO and S-containing compounds (i.e., CHNOS and CHOS, that is CHNOS+CHOS) showed weak light absorbances of the BB HULIS. The BB HULIS from maize straw had relatively high molecular weight in comparison to that in other BB emissions. The highest and lowest aromaticity were seen on the wood burning and maize cob, respectively.


Asunto(s)
Contaminantes Atmosféricos , Sustancias Húmicas , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , China , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Material Particulado/análisis , Espectroscopía Infrarroja por Transformada de Fourier
9.
PLoS One ; 13(10): e0204324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30321184

RESUMEN

A halotolerant bacterial consortium capable of degrading di-(2-ethylhexyl) phthalate (DEHP) was enriched from activated sludge. Community analysis revealed that LF contained seven families and seven genera of bacteria. The predominant species was Gordonia sp. (54.93%), Rhodococcus. sp. (9.92%) and Achromobacter sp. (8.47%). The consortium could degrade 93.84% of 1000 mg/l DEHP after 48 h incubation. The optimal temperature and pH for LF to degrade DEHP were 30 °C and 6.0, respectively. LF degraded more than 91% of DEHP with salt concentrations ranging from 0-3%. The inoculum size had great effects on DEHP degradation (incubation time < 24h). LF could degrade high concentrations of DEHP (from 100 to 2000 mg/l) with the degradation ratio above 92% after 72 h incubation. Kinetics analysis revealed that the degradation of DEHP by LF was best fitted by the first-order kinetics when the initial concentration ranged from 100 to 2000 mg/l. The main intermediates (2-ethylhexyl pentyl phthalate, butyl (2-ethylhexyl) phthalate (BEHP), mono-ethylhexyl phthalate (MEHP), mono-hexyl phthalate (MHP), mono-butyl phthalate (MBP)) in DEHP degradation process were identified using gas chromatography-mass spectrometry (GC-MS), and a new complex biochemical pathway was proposed. Furthermore, LF could also degrade dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), di-n-octyl phthalate (DOP) and phthalic acid (PA).


Asunto(s)
Biodegradación Ambiental , Dietilhexil Ftalato/metabolismo , Consorcios Microbianos/fisiología , Tolerancia a la Sal , Achromobacter/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Bacteria Gordonia/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Rhodococcus/metabolismo , Salinidad , Aguas del Alcantarillado/microbiología , Cloruro de Sodio/química , Temperatura
10.
J Agric Food Chem ; 60(48): 12011-9, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23140499

RESUMEN

The fruits of the European plum Prunus domestica exhibit a great diversity in appearance including skin colors. This study attempts to elucidate the phenylpropanoid and flavonoid profiles of 28 plum varieties belonging to P. domestica and related species as well as hybrids. A total of 49 phenolic compounds extracted from the fruit skin were quantitatively evaluated in an HPLC-DAD-based metabolomic study. The total phenolic contents of the cultivars varied among 0.4-29.9 mg/g fresh weight. The predominant anthocyanins were glycosides of cyanidin and peonidin, and rutin was the principal flavonol, whereas neochlorogenic acid and n-chlorogenic acid were the main hydroxycinnamic acids. Aside from these major phenolic classes, a group of tentatively identified flavones and several acylated flavonoids were also found. Principal component analysis revealed that anthocyanins and hydroxycinnamic acids contributed most to variety separation. The heterogeneity between the different varieties was also assessed using hierarchical cluster analysis of sample phenolics profile. A simple separation of species could not be found confirming the close relationship among them.


Asunto(s)
Frutas/química , Fenoles/análisis , Prunus/química , Antocianinas/análisis , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Ácidos Cumáricos/análisis , Flavonoides/análisis , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA