Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 9(7): 5460-76, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22346708

RESUMEN

This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

2.
Ultrasonics ; 54(1): 375-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23725597

RESUMEN

An ultrasonic planar horn with a Bézier profile is developed. The first longitudinal displacement mode of the horn is exploited for high displacement amplification in order to reduce the penetration force required to enter and cut materials. The displacement amplification and stress distribution characteristics of the Bézier horn and the commonly used catenary horn are examined. The penetration force by the Bézier horn is nearly 75% of that by the catenary horn with a penetration speed of 0.25 mm/s during cutting a tissue stimulant. At a penetration speed of 0.5 mm/s, the penetration force by the Bézier horn is nearly 85% of that by the catenary horn for cutting a polymethylmethacrylate (PMMA) material. The decrease in the penetration force by the Bézier horn is attributed to the fact that the displacement amplification of the Bézier horn is 30% higher than that of the traditional catenary horn with the same length and end surface widths.


Asunto(s)
Metalurgia/instrumentación , Sonicación/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo
3.
Ultrasonics ; 54(8): 2063-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25081407

RESUMEN

A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA