Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Natl Sci Rev ; 10(10): nwad129, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37671327

RESUMEN

Inorganic aerogels have exhibited many superior characteristics with extensive applications, but are still plagued by a nearly century-old tradeoff between their mechanical and thermal properties. When reducing thermal conductivity by ultralow density, inorganic aerogels generally suffer from large fragility due to their brittle nature or weak joint crosslinking, while enhancing the mechanical robustness by material design and structural engineering, they easily sacrifice thermal insulation and stability. Here, we report a chemically bonded multi-nanolayer design and synthesis of a graphene/amorphous boron nitride aerogel to address this typical tradeoff to further enhance mechanical and thermal properties. Attributed to the chemically bonded interface and coupled toughening effect, our aerogels display a low density of 0.8 mg cm-3 with ultrahigh flexibility (elastic compressive strain up to 99% and bending strain up to 90%), and exceptional thermostability (strength degradation <3% after sharp thermal shocks), as well as the lowest thermal conductivities in a vacuum (only 1.57 mW m-1 K-1 at room temperature and 10.39 mW m-1 K-1 at 500°C) among solid materials to date. This unique combination of mechanical and thermal properties offers an attractive material system for thermal superinsulation at extreme conditions.

2.
Adv Sci (Weinh) ; 5(10): 1800750, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30356956

RESUMEN

MXene films are attractive for advanced supercapacitor electrodes requiring high volumetric energy density due to their high redox capacitance combined with extremely high packing density. However, the self-restacking of MXene flakes unavoidably decreases the volumetric performance, mass loading, and rate capability. Herein, a simple strategy is developed to prepare a flexible and free-standing modified MXene/holey graphene film by filtration of the alkalized MXene and holey graphene oxide dispersions, followed by a mild annealing treatment. After terminal groups (-F/-OH) are removed, the increased proportion of Ti atoms enables more pseudocapacitive reaction. Meanwhile, the embedded holey graphene effectively prevents the self-restacking of MXene and forms a high nanopore connectivity network, which is able to immensely accelerate the ion transport and shorten transport pathways for both ion and electron. When applied as electrode materials for supercapacitors, it can deliver an ultrahigh volumetric capacitance (1445 F cm-3) at 2 mV s-1, excellent rate capability, and high mass loading. In addition, the assembled symmetric supercapacitor demonstrates a fantastic volumetric energy density (38.6 Wh L-1), which is the highest value reported for MXene-based electrodes in aqueous electrolytes. This work opens a new avenue for the further exploration of MXene materials in energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA