Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 22(9)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28872627

RESUMEN

Protein pupylation is a type of post-translation modification, which plays a crucial role in cellular function of bacterial organisms in prokaryotes. To have a better insight of the mechanisms underlying pupylation an initial, but important, step is to identify pupylation sites. To date, several computational methods have been established for the prediction of pupylation sites which usually artificially design the negative samples using the verified pupylation proteins to train the classifiers. However, if this process is not properly done it can affect the performance of the final predictor dramatically. In this work, different from previous computational methods, we proposed an enhanced positive-unlabeled learning algorithm (EPuL) to the pupylation site prediction problem, which uses only positive and unlabeled samples. Firstly, we separate the training dataset into the positive dataset and the unlabeled dataset which contains the remaining non-annotated lysine residues. Then, the EPuL algorithm is utilized to select the reliably negative initial dataset and then iteratively pick out the non-pupylation sites. The performance of the proposed method was measured with an accuracy of 90.24%, an Area Under Curve (AUC) of 0.93 and an MCC of 0.81 by 10-fold cross-validation. A user-friendly web server for predicting pupylation sites was developed and was freely available at http://59.73.198.144:8080/EPuL.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Aprendizaje Automático , Procesamiento Proteico-Postraduccional , Proteínas/química , Bases de Datos de Proteínas , Unión Proteica , Programas Informáticos
2.
ScientificWorldJournal ; 2014: 183809, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25013845

RESUMEN

Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.


Asunto(s)
Algoritmos , Inteligencia Artificial/normas , Control de Calidad
3.
Comput Biol Med ; 168: 107727, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029532

RESUMEN

Multi-objective optimization problems (MOPs) are characterized as optimization problems in which multiple conflicting objective functions are optimized simultaneously. To solve MOPs, some algorithms used machine learning models to drive the evolutionary algorithms, leading to the design of a variety of model-based evolutionary algorithms. However, model collapse occurs during the generation of candidate solutions, which results in local optima and poor diversity in model-based evolutionary algorithms. To address this problem, we propose a dual-population multi-objective evolutionary algorithm driven by Wasserstein generative adversarial network with gradient penalty (DGMOEA), where the dual-populations coordinate and cooperate to generate high-quality solutions, thus improving the performance of the evolutionary algorithm. We compare the proposed algorithm with the 7 state-of-the-art algorithms on 20 multi-objective benchmark functions. Experimental results indicate that DGMOEA achieves significant results in solving MOPs, where the metrics IGD and HV outperform the other comparative algorithms on 15 and 18 out of 20 benchmarks, respectively. Our algorithm is evaluated on the LEADS-PEP dataset containing 53 protein-peptide complexes, and the experimental results on solving the protein-peptide docking problem indicated that DGMOEA can effectively reduce the RMSD between the generated and the original peptide's 3D poses and achieve more competitive results.


Asunto(s)
Algoritmos , Benchmarking , Proteínas , Aprendizaje Automático , Péptidos
4.
Comput Biol Med ; 169: 107777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104516

RESUMEN

The identification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Medical image data mainly include electronic health record data and gene information data, etc. Although intelligent imaging provided a good scheme for medical image analysis over traditional methods that rely on the handcrafted features, it remains challenging due to the diversity of imaging modalities and clinical pathologies. Many medical image identification methods provide a good scheme for medical image analysis. The concepts pertinent of methods, such as the machine learning, deep learning, convolutional neural networks, transfer learning, and other image processing technologies for medical image are analyzed and summarized in this paper. We reviewed these recent studies to provide a comprehensive overview of applying these methods in various medical image analysis tasks, such as object detection, image classification, image registration, segmentation, and other tasks. Especially, we emphasized the latest progress and contributions of different methods in medical image analysis, which are summarized base on different application scenarios, including classification, segmentation, detection, and image registration. In addition, the applications of different methods are summarized in different application area, such as pulmonary, brain, digital pathology, brain, skin, lung, renal, breast, neuromyelitis, vertebrae, and musculoskeletal, etc. Critical discussion of open challenges and directions for future research are finally summarized. Especially, excellent algorithms in computer vision, natural language processing, and unmanned driving will be applied to medical image recognition in the future.


Asunto(s)
Diagnóstico por Imagen , Redes Neurales de la Computación , Diagnóstico por Imagen/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático
5.
ScientificWorldJournal ; 2013: 125625, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348137

RESUMEN

A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.


Asunto(s)
Algoritmos , Modelos Teóricos , Reproducibilidad de los Resultados
6.
Comput Biol Med ; 162: 107120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276753

RESUMEN

In recent years, Unet and its variants have gained astounding success in the realm of medical image processing. However, some Unet variant networks enhance their performance while increasing the number of parameters tremendously. For lightweight and performance enhancement jointly considerations, inspired by SegNeXt, we develop a medical image segmentation network model using atrous multi-scale (AMS) convolution, named AMSUnet. In particular, we construct a convolutional attention block AMS using atrous and multi-scale convolution, and redesign the downsampling encoder based on this block, called AMSE. To enhance feature fusion, we design a residual attention mechanism module (i.e., RSC) and apply it to the skip connection. Compared with existing models, our model only needs 2.62 M parameters to achieve the purpose of lightweight. According to experimental results on various datasets, the segmentation performance of the designed model is superior for small, medium, and large-scale targets. Code will be available at https://github.com/llluochen/AMSUnet.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación
7.
IEEE J Biomed Health Inform ; 26(8): 4238-4247, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476570

RESUMEN

Internet of Things assisted healthcare services grants reliable clinical diagnosis and analysis by exploiting heterogeneous communication and infrastructure elements. Communication is enabled through point-to-point or cluster-to-point between the users and the diagnosis center. In this process, the complication is the resource sharing and diagnosis swiftness invalidating multiple resources. IoT's open and ubiquitous nature results in proactive resource sharing, resulting in delayed transmissions. This manuscript introduces the Redemptive Resource Sharing and Allocation (R2SA) scheme to address this issue. The available health data is accumulated on a first-come-first-serve basis, and the transmitting infrastructure is selected. In this process, the data-to-capacity of the available infrastructure is identified for non-redemptive resource allocation. The extremity of the capacity and unavailability of the resource is then analyzed for parallel processing and allocation. Therefore, the data accumulation and exchange rely on concurrent sharing and resource allocation processes, deferring a better accumulation ratio. The concurrent redemptive selection and sharing reduces transmission delay, improves resource allocation, and reduces transmission complexity. The entire process is managed for transfer learning, data-to-capacity validation, and concurrent recommendation. The first validation knowledge base remains the same/shared for different data accumulation and sharing intervals.


Asunto(s)
Internet de las Cosas , Comunicación , Atención a la Salud , Humanos
8.
IEEE Trans Cybern ; 49(2): 542-555, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29990274

RESUMEN

In most metaheuristic algorithms, the updating process fails to make use of information available from individuals in previous iterations. If this useful information could be exploited fully and used in the later optimization process, the quality of the succeeding solutions would be improved significantly. This paper presents our method for reusing the valuable information available from previous individuals to guide later search. In our approach, previous useful information was fed back to the updating process. We proposed six information feedback models. In these models, individuals from previous iterations were selected in either a fixed or random manner. Their useful information was incorporated into the updating process. Accordingly, an individual at the current iteration was updated based on the basic algorithm plus some selected previous individuals by using a simple fitness weighting method. By incorporating six different information feedback models into ten metaheuristic algorithms, this approach provided a number of variants of the basic algorithms. We demonstrated experimentally that the variants outperformed the basic algorithms significantly on 14 standard test functions and 10 CEC 2011 real world problems, thereby, establishing the value of the information feedback models.

11.
Comput Intell Neurosci ; 2014: 857254, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25404940

RESUMEN

An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm.


Asunto(s)
Algoritmos , Modelos Teóricos , Solución de Problemas , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA