Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 605(7909): 325-331, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418683

RESUMEN

Cellular reprogramming can manipulate the identity of cells to generate the desired cell types1-3. The use of cell intrinsic components, including oocyte cytoplasm and transcription factors, can enforce somatic cell reprogramming to pluripotent stem cells4-7. By contrast, chemical stimulation by exposure to small molecules offers an alternative approach that can manipulate cell fate in a simple and highly controllable manner8-10. However, human somatic cells are refractory to chemical stimulation owing to their stable epigenome2,11,12 and reduced plasticity13,14; it is therefore challenging to induce human pluripotent stem cells by chemical reprogramming. Here we demonstrate, by creating an intermediate plastic state, the chemical reprogramming of human somatic cells to human chemically induced pluripotent stem cells that exhibit key features of embryonic stem cells. The whole chemical reprogramming trajectory analysis delineated the induction of the intermediate plastic state at the early stage, during which chemical-induced dedifferentiation occurred, and this process was similar to the dedifferentiation process that occurs in axolotl limb regeneration. Moreover, we identified the JNK pathway as a major barrier to chemical reprogramming, the inhibition of which was indispensable for inducing cell plasticity and a regeneration-like program by suppressing pro-inflammatory pathways. Our chemical approach provides a platform for the generation and application of human pluripotent stem cells in biomedicine. This study lays foundations for developing regenerative therapeutic strategies that use well-defined chemicals to change cell fates in humans.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes Inducidas , Linaje de la Célula , Humanos , Células Madre Pluripotentes Inducidas/citología
2.
Immunol Rev ; 321(1): 300-334, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688394

RESUMEN

Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Muerte Celular Regulada , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Inmunoterapia , Apoptosis
3.
Proc Natl Acad Sci U S A ; 121(8): e2313042121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346194

RESUMEN

One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.


Asunto(s)
Sinapsis Eléctricas , Epilepsia , Animales , Humanos , Sinapsis/fisiología , Interneuronas/fisiología , Encéfalo , Epilepsia/patología , Convulsiones/patología , Mamíferos
4.
Plant Cell ; 35(6): 2369-2390, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36869653

RESUMEN

Plants often utilize nucleotide-binding leucine-rich repeat (NLR) proteins to perceive pathogen infections and trigger a hypersensitive response (HR). The endosomal sorting complex required for transport (ESCRT) machinery is a conserved multisubunit complex that is essential for the biogenesis of multivesicular bodies and cargo protein sorting. VPS23 is a key component of ESCRT-I and plays important roles in plant development and abiotic stresses. ZmVPS23L, a homolog of VPS23-like in maize (Zea mays), was previously identified as a candidate gene in modulating HR mediated by the autoactive NLR protein Rp1-D21 in different maize populations. Here, we demonstrate that ZmVPS23L suppresses Rp1-D21-mediated HR in maize and Nicotiana benthamiana. Variation in the suppressive effect of HR by different ZmVPS23L alleles was correlated with variation in their expression levels. ZmVPS23 also suppressed Rp1-D21-mediated HR. ZmVPS23L and ZmVPS23 predominantly localized to endosomes, and they physically interacted with the coiled-coil domain of Rp1-D21 and mediated the relocation of Rp1-D21 from the nucleo-cytoplasm to endosomes. In summary, we demonstrate that ZmVPS23L and ZmVPS23 are negative regulators of Rp1-D21-mediated HR, likely by sequestrating Rp1-D21 in endosomes via physical interaction. Our findings reveal the role of ESCRT components in controlling plant NLR-mediated defense responses.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Proteínas NLR/metabolismo , Endosomas/metabolismo , Transporte de Proteínas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Nucleótidos/metabolismo
5.
Trends Genet ; 38(7): 708-723, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35314082

RESUMEN

Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.


Asunto(s)
Culicidae , Tecnología de Genética Dirigida , Malaria , Wolbachia , Animales , Culicidae/genética , Malaria/genética , Malaria/prevención & control , Mosquitos Vectores/genética , Wolbachia/genética
6.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38431524

RESUMEN

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Basidiomycota/fisiología , Regulación de la Expresión Génica de las Plantas , Fenotipo , Mutación/genética , Ácido Salicílico/metabolismo , Ustilago/genética
7.
Acc Chem Res ; 57(9): 1360-1371, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669148

RESUMEN

ConspectusNonradiative processes with the determined role in excited-state energy conversion, such as internal conversion (IC), vibrational relaxation (VR), intersystem crossing (ISC), and energy or electron transfer (ET or eT), have exerted a crucial effect on biological functions in nature. Inspired by these, nonradiative process manipulation has been extensively utilized to develop organic functional materials in the fields of energy and biomedicine. Therefore, comprehensive knowledge and effective manipulation of sophisticated nonradiative processes for achieving high-efficiency excited-state energy conversion are quintessential. So far, many strategies focused on molecular engineering have demonstrated tremendous potential in manipulating nonradiative processes to tailor excited-state energy conversion. Besides, molecular aggregation considerably affects nonradiative processes due to their ultrasensitivity, thus providing us with another essential approach to manipulating nonradiative processes, such as the famous aggregation-induced emission. However, the weak interactions established upon aggregation, namely, the aggregation microenvironment (AME), possess hierarchical, dynamic, and systemic characteristics and are extremely complicated to elucidate. Revealing the relationship between the AME and nonradiative process and employing it to customize excited-state energy conversion would greatly promote advanced materials in energy utilization, biomedicine, etc., but remain a huge challenge. Our group has devoted much effort to achieving this goal.In this Account, we focus on our recent developments in nonradiative process manipulation based on AME. First, we provide insight into the effect of the AME on nonradiative process in terms of its steric effect and electronic regulation, illustrating the possibility of nonradiative process manipulation through AME modulation. Second, the distinct enhanced steric effect is established by crystallization and heterogeneous polymerization to conduct crystallization-induced reversal from dark to bright excited states and dynamic hardening-triggered nonradiative process suppression for highly efficient luminescence. Meanwhile, promoting the ISC process and stabilizing the triplet state are also manipulated by the crystal and polymer matrix to induce room-temperature phosphorescence. Furthermore, the strategies employed to exploit nonradiative processes for photothermy and photosensitization are reviewed. For photothermal conversion, besides the weakened steric effect with promoted molecular motions, a new strategy involving the introduction of diradicals upon aggregation to narrow the energy band gap and enhance intermolecular interactions is put forward to facilitate IC and VR for high-efficiency photothermal conversion. For photosensitization, both the enhanced steric effect from the rigid matrix and the effective electronic regulation from the electron-rich microenvironment are demonstrated to facilitate ISC, ET, and eT for superior photosensitization. Finally, we explore the existing challenges and future directions of nonradiative process manipulation by AME modulation for customized excited-state energy conversion. We hope that this Account will be of wide interest to readers from different disciplines.

8.
Med Res Rev ; 44(3): 975-1012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126568

RESUMEN

Ischemic stroke (IS) poses a significant threat to global human health and life. In recent decades, we have witnessed unprecedented progresses against IS, including thrombolysis, thrombectomy, and a few medicines that can assist in reopening the blocked brain vessels or serve as standalone treatments for patients who are not eligible for thrombolysis/thrombectomy therapies. However, the narrow time windows of thrombolysis/thrombectomy, coupled with the risk of hemorrhagic transformation, as well as the lack of highly effective and safe medications, continue to present big challenges in the acute treatment and long-term recovery of IS. In the past 3 years, several excellent articles have reviewed pathophysiology of IS and therapeutic medicines for the treatment of IS based on the pathophysiology. Regretfully, there is no comprehensive overview to summarize all categories of anti-IS drugs/agents designed and synthesized based on molecular mechanisms of IS pathophysiology. From medicinal chemistry view of point, this article reviews a multitude of anti-IS drugs/agents, including small molecule compounds, natural products, peptides, and others, which have been developed based on the molecular mechanism of IS pathophysiology, such as excitotoxicity, oxidative/nitrosative stresses, cell death pathways, and neuroinflammation, and so forth. In addition, several emerging medicines and strategies, including nanomedicines, stem cell therapy and noncoding RNAs, which recently appeared for the treatment of IS, are shortly introduced. Finally, the perspectives on the associated challenges and future directions of anti-IS drugs/agents are briefly provided to move the field forward.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/etiología , Terapia Trombolítica/efectos adversos , Trombectomía , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Resultado del Tratamiento
9.
Med Res Rev ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769656

RESUMEN

Oncogenes and tumor suppressors are well-known to orchestrate several signaling cascades, regulate extracellular and intracellular stimuli, and ultimately control the fate of cancer cells. Accumulating evidence has recently revealed that perturbation of these key modulators by mutations or abnormal protein expressions are closely associated with drug resistance in cancer therapy; however, the inherent drug resistance or compensatory mechanism remains to be clarified for targeted drug discovery. Thus, dual-target drug development has been widely reported to be a promising therapeutic strategy for improving drug efficiency or overcoming resistance mechanisms. In this review, we provide an overview of the therapeutic strategies of dual-target drugs, especially focusing on pharmacological small-molecule compounds in cancer, including small molecules targeting mutation resistance, compensatory mechanisms, synthetic lethality, synergistic effects, and other new emerging strategies. Together, these therapeutic strategies of dual-target drugs would shed light on discovering more novel candidate small-molecule drugs for the future cancer treatment.

10.
J Am Chem Soc ; 146(26): 18041-18049, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899479

RESUMEN

Folding thermodynamics, quantitatively described using parameters such as ΔGfold°, ΔHfold°, and ΔSfold°, is essential for characterizing the stability and functionality of noncanonical nucleic acid structures but remains difficult to measure at the molecular level. Leveraging the programmability of dynamic deoxyribonucleic acid (DNA) chemistry, we introduce a DNA-based molecular tool capable of performing a free energy shift assay (FESA) that directly characterizes the thermodynamics of noncanonical DNA structures in their native environments. FESA operates by the rational design of a reference DNA probe that is energetically equivalent to a target noncanonical nucleic acid structure in a series of toehold-exchange reactions, yet is structurally incapable of folding. As a result, a free energy shift (ΔΔGrxn°) is observed when plotting the reaction yield against the free energy of each toehold-exchange. We mathematically demonstrated that ΔGfold°, ΔHfold°, and ΔSfold° of the analyte can be calculated based on ΔΔGrxn°. After validating FESA using six DNA hairpins by comparing the measured ΔGfold°, ΔHfold°, and ΔSfold° values against predictions made by NUPACK software, we adapted FESA to characterize noncanonical nucleic acid structures, encompassing DNA triplexes, G-quadruplexes, and aptamers. This adaptation enabled the successful characterization of the folding thermodynamics for these complex structures under various experimental conditions. The successful development of FESA marks a paradigm shift and a technical advancement in characterizing the thermodynamics of noncanonical DNA structures through molecular tools. It also opens new avenues for probing fundamental chemical and biophysical questions through the lens of molecular engineering and dynamic DNA chemistry.


Asunto(s)
ADN , Conformación de Ácido Nucleico , Termodinámica , ADN/química
11.
J Am Chem Soc ; 146(10): 6516-6521, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38411013

RESUMEN

Regulatory modules for controlling the kinetics of toehold-mediated strand displacement (TMSD) play critical roles in designing dynamic and dissipative DNA chemical reaction networks (CRNs) but are hardwired into sequence designs. Herein, we introduce antitoehold (At), a plug-and-play module for reversible and continuous tuning of TMSD kinetics by temporarily occupying the toehold domain via a metastable duplex and base stacking. We demonstrate that kinetic control can be readily activated or deactivated in real time for any TMSD by simply adding At or anti-At. Continuous tuning of TMSD kinetics can also be achieved by altering the concentration of At. Moreover, the simple addition of At could readily reprogram existing TMSDs into a pulse-generation DNA CRN with continuous tunability. Our At approach also offers a new way for engineering continuously tunable DNA hybridization probes, which may find practical uses for discriminating clinically important mutations. Because of the simplicity, we anticipate that At will find wide applications for engineering DNA CRNs with diverse dynamic and dissipative behaviors, and DNA hybridization probes with tunable affinity and selectivity.


Asunto(s)
ADN , ADN/química , Hibridación de Ácido Nucleico , Cinética , Sondas de ADN
12.
Mol Cancer ; 23(1): 22, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262996

RESUMEN

Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.


Asunto(s)
Autofagia , Neoplasias , Humanos , Autofagosomas , Núcleo Celular , Descubrimiento de Drogas
13.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335322

RESUMEN

The configuration elucidation of organic molecules continues to pose significant challenges in studies involving stereochemistry. Nuclear magnetic resonance (NMR) techniques are powerful for obtaining such structural information. Anisotropic NMR techniques, such as measurement of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), complementing isotropic NMR parameters, provide relative configuration information. RCSAs provide valuable structural information, especially for nonprotonated carbons, yet have been severely underutilized due to the lack of an easily operational alignment medium capable of rapid transition from anisotropic to isotropic environments, especially in aqueous conditions. In this study, an oligopeptide-based alignment media (FK)4 is presented for RCSA measurements. Temperature variation manipulates the assembly of (FK)4, yielding tunable anisotropic and isotropic phases without the requirement of any special devices or time-consuming correction procedures during data analysis. Decent observed ΔΔRCSA values from sp3 carbons benefit the utilization of RCSA measurements in the structural elucidation of organic molecules highly composed with sp3 carbons. Moreover, the (FK)4 alignment medium is applicable for both RDC and RCSA measurements in one sample, further advancing the configuration analysis of molecules of interest.

14.
Small ; 20(8): e2307419, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822158

RESUMEN

Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g-1 ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li1.2 Mn0.54 Co0.13-x Ybx Ni0.13 O2 where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.

15.
Chembiochem ; 25(5): e202300727, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100267

RESUMEN

The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and ß-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Caenorhabditis elegans , Proteínas Amiloidogénicas , Péptidos beta-Amiloides
16.
Invest New Drugs ; 42(1): 70-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085423

RESUMEN

In recent years, a number of novel pharmaceutical agents have received approval for the management of acute myeloid leukemia (AML). However, there is still ample opportunity for enhancing efficacy. The Wee1 inhibitor adavosertib (ADA) shows promise for the treatment of AML. Based on the effect of drugs on DNA damage, we conducted a combination study involving ADA and fimepinostat (CUDC-907), a dual inhibitor of PI3K and histone deacetylase (HDAC). We observed that the combination of CUDC-907 and ADA exhibited a synergistic effect in enhancing the antileukemic activity in both AML cell lines and primary patient samples, demonstrating through flow cytometry analysis and MTT assay, respectively. Additionally, our study revealed that CUDC-907 has the ability to augment ADA-induced DNA damage, as determined by the measurement of γH2AX levels and the implementation of the alkaline comet assay. Through the utilization of western blotting analyses, targeted inhibitors, and ectopic overexpression, we propose that the downregulation of Wee1, CHK1, RNR, and c-Myc are the potential mechanisms. Our data support the development of ADA in combination with CUDC-907 for the treatment of AML.


Asunto(s)
Leucemia Mieloide Aguda , Morfolinas , Pirazoles , Pirimidinas , Pirimidinonas , Compuestos de Azufre , Humanos , Daño del ADN , Leucemia Mieloide Aguda/tratamiento farmacológico
17.
Opt Lett ; 49(12): 3372-3375, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875623

RESUMEN

We propose a hybrid fiber-based time synchronization and vibration detection system. The vibration is detected by exploring the idle light of the time synchronization system, i.e., the Rayleigh backscattering of the timing pulse disseminated in the fiber link. The addition of a sensing function does not affect the performance of time synchronization. In the multiuser experimental demonstration, time deviation results are 3.6 ps at τ = 1 s and 1.4 ps at τ = 104 s on the 40-km fiber link. Meanwhile, the hybrid system can accurately detect and locate vibrations occurring on the link. This method enables multiple functions of the optical fiber network without occupying extra optical channels. Moreover, it gives a possible solution for enhancing the security of the time synchronization network through vibration detection.

18.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305233

RESUMEN

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Trastorno Depresivo Mayor/genética , Fosfatidilinositol 3-Quinasas , Neuronas , Plasticidad Neuronal
19.
J Cardiovasc Magn Reson ; 26(2): 101047, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825155

RESUMEN

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0 T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94 %) IgG4-RD patients and 22 (76 %) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r = 0.55, P = 0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6 v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

20.
Bioorg Med Chem Lett ; 97: 129558, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956762

RESUMEN

The enhancer of zeste homolog 2 (EZH2) plays the role of the main catalytic subunit of polycomb repressive complex 2 (PRC2) that catalyzes the methylation of histone H3 lysine 27 (H3K27). Overexpression or mutation of EZH2 has been observed in many types of hematologic malignancies and solid tumors, such as myeloma, lymphoma, prostate, breast, kidney, and lung cancers. EZH2 has been demonstrated as a promising therapeutic target for the treatment of tumors. Based on the structure of 1 (EPZ-6438), a series of novel conformationally constrained derivatives were designed and synthesized aiming to improve the EZH2 inhibition activity, especially for mutated EZH2. Structure and activity relationship (SAR) exploration and optimization at both enzymatic and cellular levels led to the discovery of 28. In vitro, 28 displayed potent EZH2 inhibition activity with an IC50 value of 0.95 nM, which is comparable to EPZ-6438 (1). 28 exhibited high anti-proliferation activity against different lymphoma cell lines including WSU-DLCL2, Pfeiffer and Karpas-422 (IC50 = 2.36, 1.73, and 1.82 nM, respectively). In vivo, 28 showed acceptable pharmacokinetic characteristics (oral bioavailability F = 36.9%) and better efficacy than 1 in both Pfeiffer and Karpas-422 xenograft mouse models, suggesting that it can be further developed as a potential therapeutic candidate for EZH2-associated cancers.


Asunto(s)
Neoplasias , Animales , Humanos , Masculino , Ratones , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Linfoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA