Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917353

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virales , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Humanos , Fusión de Membrana , Ratones , Proteínas Virales/inmunología
2.
J Med Virol ; 96(4): e29568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38549430

RESUMEN

The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.


Asunto(s)
Vacunas contra el Cáncer , Herpesvirus Suido 1 , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales , Virus Oncolíticos , Animales , Humanos , Ratones , Línea Celular Tumoral , Herpesvirus Suido 1/genética , Neoplasias Renales/terapia , Virus Oncolíticos/genética , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Vacunas Atenuadas , Vacunas contra el Cáncer/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
3.
BMC Oral Health ; 24(1): 592, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778368

RESUMEN

BACKGROUND: Treating the coronal dens invaginatus (CDI) with pulp infection commonly involves the removal of invagination, which increases the risk of perforation and fracture, and compromises the tooth structure. Minimally invasive endodontic management of CDI is highly recommended. This report describes two cases of type II CDI with the application of personalized templates. CASE PRESENTATION: Two cases of type II CDI, affecting the main root canal in a maxillary canine and a lateral incisor, were diagnosed. A guided endodontics (GE) approach was applied. Cone-beam computed tomography and intraoral scans were imported and aligned in a virtual planning software to design debridement routes and templates. The MICRO principle (which involves the aspects of Mechanical (M) debridement, Irrigation (I), Access cavities (C), Rectilinear routes (R), and Obstruction (O)) was proposed for designing optimal debridement routes for future applications. The templates were innovatively personalized and designed to preserve the tooth structure maximally while effectively debriding the root canal. Root canal treatment with supplementary disinfection was then performed. The follow-up of the two patients revealed favorable clinical and radiographic outcomes. CONCLUSIONS: The GE approach could be a feasible method for preserving healthy dental structure while effectively debriding the root canal, thereby achieving successful and minimally invasive endodontic treatment for CDI.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Dens in Dente , Tratamiento del Conducto Radicular , Humanos , Dens in Dente/terapia , Dens in Dente/complicaciones , Dens in Dente/diagnóstico por imagen , Tratamiento del Conducto Radicular/métodos , Femenino , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Incisivo/anomalías , Incisivo/diagnóstico por imagen , Desbridamiento/métodos , Adolescente
4.
J Med Virol ; 93(6): 3455-3464, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621615

RESUMEN

Seasonal influenza is an acute respiratory infection causing around 500 000 global deaths annually. There is an unmet medical need to develop more effective antiviral drugs and vaccines against influenza infection. A rapid, accurate, high-throughput titration assay for influenza virus particles or neutralizing antibodies would be extremely useful in these research fields. However, commonly used methods such as tissue culture infective dose and plaque-forming units (PFU) for virus particle quantification, and the plaque reduction neutralization test (PRNT) for antibody determination are time-consuming, laborious, and have limited accuracy. In this study, we developed an efficient assay based on the enzyme-linked immunospot (ELISPOT) technique for the influenza virus and neutralizing antibody titration. Two broad-spectrum antibodies recognizing the nucleoproteins of influenza A and B viruses were used in the assay to broadly and highly sensitively detect influenza virus-infected cells at 16 hours postinfection. An optimized cell culture medium with no tosyl phenylalanyl chloromethyl ketone trypsin and high dose oseltamivir acid was used to improve quantitation accuracy. This ELISPOT assay displayed a good correlation (R2 = 0.9851) with the PFU assay when used to titrate 30 influenza virus isolates. The assay was also applied to measure influenza-neutralizing antibodies in 40 human sera samples, showing a good correlation (R2 = 0.9965) with the PRNT assay. This ELISPOT titration assay is a rapid, accurate, high-throughput assay for quantification of influenza virus and neutralizing antibodies, and provides a powerful tool for research into and development of drugs and vaccines against influenza.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Ensayo de Immunospot Ligado a Enzimas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Gripe Humana/diagnóstico , Orthomyxoviridae/inmunología , Anticuerpos Monoclonales/inmunología , Medios de Cultivo/química , Ensayo de Immunospot Ligado a Enzimas/normas , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Gripe Humana/inmunología , Pruebas de Neutralización/métodos , Pruebas de Neutralización/normas , Orthomyxoviridae/química , Reproducibilidad de los Resultados
5.
Genome Res ; 27(5): 865-874, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27646534

RESUMEN

Uncovering genetic variation through resequencing is limited by the fact that only sequences with similarity to the reference genome are examined. Reference genomes are often incomplete and cannot represent the full range of genetic diversity as a result of geographical divergence and independent demographic events. To more comprehensively characterize genetic variation of pigs (Sus scrofa), we generated de novo assemblies of nine geographically and phenotypically representative pigs from Eurasia. By comparing them to the reference pig assembly, we uncovered a substantial number of novel SNPs and structural variants, as well as 137.02-Mb sequences harboring 1737 protein-coding genes that were absent in the reference assembly, revealing variants left by selection. Our results illustrate the power of whole-genome de novo sequencing relative to resequencing and provide valuable genetic resources that enable effective use of pigs in both agricultural production and biomedical research.


Asunto(s)
Mapeo Contig/métodos , Genómica/métodos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Porcinos/genética , Animales , Mapeo Contig/normas , Genoma , Genómica/normas , Análisis de Secuencia de ADN/normas
6.
BMC Genomics ; 20(1): 372, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088359

RESUMEN

BACKGROUND: Dysregulation of adipogenesis causes metabolic diseases, like obesity and fatty liver. Migratory birds such as geese have a high tolerance of massive energy intake and exhibit little pathological development. Domesticated goose breeds, derivatives of the wild greyleg goose (Anser anser) or swan goose (Anser cygnoides), have high tolerance of energy intake resembling their ancestor species. Thus, goose is potentially a model species to study mechanisms associated with adipogenesis. RESULTS: Phenotypically, goose liver exhibited higher fat accumulation than adipose tissues during fattening (liver increased by 3.35 fold than 1.65 fold in adipose), showing a priority of fat accumulation in liver. We found the number of differentially expressed genes in liver (13.97%) was nearly twice the number of that in adipose (6.60%). These differentially expressed genes in liver function in several important lipid metabolism pathways, immune response, regulation of cancer, while in adipose, terms closely related to protein binding, gluconeogenesis were enriched. Typically, genes like MDH2 and SCD, which have key roles in glycolysis and fatty acids metabolism, had higher fold change in liver than in adipose tissues. Three hundred two differentially expressed long noncoding RNAs involved in regulation of metabolism in liver were also identified. For example, lncRNA XLOC_292762, which was 5.7 kb downstream of FERMT2, a gene involved phosphatidylinositol-3,4,5-trisphosphate binding, was significantly down-regulated after the high-intake feeding period. Further investigation of documented obesity-related orthologous genes in goose suggested that understanding the evolutionary split from mammals in adipogenesis will make goose fatty liver a better resource for future research. CONCLUSIONS: Our research reveals that goose uses liver as the major tissue to regulate a distinct lipid synthesis and degradation flux and the dynamic expression network analyses showed numerous layers of positive responses to both massive energy intake and possible pathological development. Our results offer insights into goose adipogenesis and provide a new perspective for research in human metabolic dysregulation.


Asunto(s)
Tejido Adiposo/química , Hígado Graso/veterinaria , Gansos/genética , Perfilación de la Expresión Génica/veterinaria , Hígado/química , Adipogénesis , Animales , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Metabolismo Energético , Evolución Molecular , Hígado Graso/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Gluconeogénesis , Metabolismo de los Lípidos , Masculino , ARN Largo no Codificante/genética
7.
Poult Sci ; 94(10): 2537-45, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26354761

RESUMEN

Incubation temperature has an immediate and long-term influence on the embryonic development in birds. DNA methylation as an important environment-induced mechanism could serve as a potential link between embryos' phenotypic variability and temperature variation, which reprogrammed by DNA (cytosine-5)-methyltransferases (DNMTS) and Methyl-CpG binding domain proteins (MBPS) 3&5 (MBD3&5). Five genes in DNMTS and MBPS gene families were selected as target genes, given their important role in epigenetic modification. In this study, we aimed to test whether raising incubation temperature from 37.8°C to 38.8°C between embryonic days (ED) 1-10, ED10-20 and ED20-27 have effect on DNA methylation and whether DNMTS, MBPS play roles in thermal epigenetic regulation of early development in duck. Real-time quantitative PCR analysis showed that increased incubation temperature by 1°C has remarkably dynamic effect on gene expression levels of DNMTS and MBPS. Slight changes in incubation temperature significantly increased mRNA levels of target genes in breast muscle tissue during ED1-10, especially for DNMT1, DNMT3A and MBD5. In addition, higher temperature significantly increased enzyme activities of DNMT1 in leg muscle during ED10-20, liver tissue during ED1-10, ED20-27 and DNMT3A in leg muscle and breast muscle tissue during ED10-20. These results suggest that incubation temperature has an extended effect on gene expression levels and enzyme activities of DNMTS and MBPS, which provides evidence that incubation temperature may influence DNA methylation in duck during early developmental stages. Our data indicated that DNMTS and MBPS may involved in thermal epigenetice regulation of embryos during the early development in duck. The potential links between embryonic temperature and epigenetic modification need further investigation.


Asunto(s)
Metilación de ADN , Patos/genética , Epigénesis Genética , Óvulo/crecimiento & desarrollo , Animales , Patos/embriología , Patos/metabolismo , Óvulo/metabolismo , Distribución Aleatoria , Temperatura
8.
J Therm Biol ; 53: 80-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26590459

RESUMEN

Changes in temperature will influence poultry embryonic muscle development. However, little is known about the changes in molecular processes impacted by incubation temperature in avians. In this study, we investigated the effects of increasing the incubation temperature by 1°C from day 11-20 on the embryonic and posthatch skeletal muscle development of the Peking duck, and identified the differentially expressed genes using RNA-seq of leg muscle tissues. The results showed that altering the incubation temperature had immediate and long-lasting effects on phenotypic changes in the embryonic and post-hatching muscle development. It was shown that expression levels of total 1370 genes were altered in muscle tissues by the thermal treatments. The gene ontology (GO) analyses indicated that cellular processes including metabolism, cell cycle, catalytic activity, and enzyme regulatory activity may have involved in the muscle mass impacted by thermal manipulation. TGF-beta and insulin pathways as two classical muscle development related pathways may also involve in regulating muscle mass. These data may be helpful for understanding the physiological and biochemical processes of muscle development under environmental treatments in embryonic avians.


Asunto(s)
Respuesta al Choque Térmico , Músculo Esquelético/metabolismo , Transcriptoma , Animales , Patos/genética , Patos/metabolismo , Insulina/genética , Insulina/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
J Therm Biol ; 43: 40-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24956956

RESUMEN

The growth and development of poultry embryos are easily affected by environmental factors, such as the incubation temperature and humidity. Metabolism, including lipid metabolism, during the embryonic stage is also important for the growth and development of poultry. Our study aimed to investigate the effects of incubation temperature on embryonic lipid metabolism in the liver of ducks. To fully evaluate the effects, thermal treatment was given between embryonic ages 11 and 24 days with a 1 °C higher incubation temperature than the control group, and lipid metabolism parameters in the liver and blood serum were analyzed both at embryonic stage day 20 and 2 weeks post-hatching. Our results showed no significant changes in the embryonic stage in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) in the blood serum (P>0.05). Additionally, the mRNA expression levels and enzyme activities of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and elongase of very long chain fatty acids (ELOVL) did not show significant changes either in the embryonic stage or at hatching day 20 (P>0.05). However, there were significant changes in the gene expression and enzyme activities of TC, LDL-C and FAS at post-hatching stages (P≤0.05). These results may indicate that the thermal treatment has less influence on lipid metabolism in the embryonic stage but has a much stronger effect in the post-hatching stage.


Asunto(s)
Patos/fisiología , Embrión no Mamífero/fisiología , Calor , Metabolismo de los Lípidos , Hígado/embriología , Acetil-CoA Carboxilasa/genética , Acetiltransferasas/genética , Animales , Patos/embriología , Ácido Graso Sintasas/genética , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo
10.
Heliyon ; 10(6): e27733, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545177

RESUMEN

Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.

11.
Vaccines (Basel) ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793763

RESUMEN

Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.

12.
Adv Sci (Weinh) ; 11(15): e2305316, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342604

RESUMEN

Chronic hepatitis B (CHB) remains a major public health concern because of the inefficiency of currently approved therapies in clearing the hepatitis B surface antigen (HBsAg). Antibody-based regimens have demonstrated potency regarding virus neutralization and HBsAg clearance. However, high dosages or frequent dosing are required for virologic control. In this study, a dual-domain-engineered anti-hepatitis B virus (HBV) therapeutic antibody 73-DY is developed that exhibits significantly improved efficacy regarding both serum and intrahepatic viral clearance. In HBV-tolerant mice, administration of a single dose of 73-DY at 2 mg kg-1 is sufficient to reduce serum HBsAg by over 3 log10 IU mL-1 and suppress HBsAg to < 100 IU mL-1 for two weeks, demonstrating a dose-lowering advantage of at least tenfold. Furthermore, 10 mg kg-1 of 73-DY sustainably suppressed serum viral levels to undetectable levels for ≈ 2 weeks. Molecular analyses indicate that the improved efficacy exhibited by 73-DY is attributable to the synergy between fragment antigen binding (Fab) and fragment crystallizable (Fc) engineering, which conferred sustained viral suppression and robust viral eradication, respectively. Long-term immunotherapy with reverse chimeric 73-DY facilitated the restoration of anti-HBV immune responses. This study provides a foundation for the development of next-generation antibody-based CHB therapies.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Ratones , Animales , Antígenos de Superficie de la Hepatitis B/análisis , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B , Anticuerpos , Fagocitosis
13.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702343

RESUMEN

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Viroterapia Oncolítica/métodos , Terapia Combinada , Vacunas de ARNm/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Humanos , Línea Celular Tumoral , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/administración & dosificación
14.
Mol Biol Rep ; 40(11): 6281-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24057246

RESUMEN

The different SSCP patterns of the follicle stimulating hormone beta (FSHß) gene amplified by three pairs of primers were sequenced. Comparisons among the three nucleotide sequences of three genotypes indicated that three base substitutions (A213T, A91G, and A89C) were detected in FSHß gene, which A213T substitution led to one amino acids mutation (Lys > Met), and the other two substitutions were synonymous mutations. The AA, AB and BB genotypes patterns obtained by FSHß primer1 had evident relation with the litter traits, but the SSCP genotypes patterns obtained by FSHß primer2 and primer3 had no evident relation with the litter traits in giant panda. The giant panda with AA and AB genotype had the largest litter size and multiparity rate compared with the BB genotypes (P < 0.05). We speculated that the giant pandas with the A allele have better litter traits than those with the B allele.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple , Ursidae/genética , Alelos , Animales , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN
15.
J Exp Clin Cancer Res ; 42(1): 284, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891570

RESUMEN

BACKGROUND: Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS: PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS: Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS: PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.


Asunto(s)
Herpesvirus Suido 1 , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Animales , Porcinos , Ratones , Vacunas Atenuadas , Ratones Desnudos , Inhibidores de Puntos de Control Inmunológico , Virus Oncolíticos/genética , Receptores ErbB , Microambiente Tumoral
16.
Cell Rep Med ; 4(11): 101296, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992686

RESUMEN

Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Vacunas , Animales , Ratones , Proteínas del Envoltorio Viral/química , Glicoproteínas de Membrana , Herpesvirus Humano 4 , Proteínas Virales , Terapéutica Combinada de Anticuerpos , Epítopos , Glicoproteínas , Anticuerpos Neutralizantes/uso terapéutico
17.
Genes (Basel) ; 13(2)2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35205423

RESUMEN

Single-cell sequencing technologies have led to a revolution in our knowledge of the diversity of cell types, connections between biological levels of organization, and relationships between genotype and phenotype. These advances have mainly come from using model organisms; however, using single-cell sequencing in non-model organisms could enable investigations of questions inaccessible with typical model organisms. This primer describes a general workflow for single-cell sequencing studies and considerations for using non-model organisms (limited to multicellular animals). Importantly, single-cell sequencing, when further applied in non-model organisms, will allow for a deeper understanding of the mechanisms between genotype and phenotype and the basis for biological variation.


Asunto(s)
Fenotipo , Animales , Genotipo
18.
Vaccines (Basel) ; 10(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36016191

RESUMEN

Recent efforts have been directed toward the development of universal influenza vaccines inducing broadly neutralizing antibodies to conserved antigenic supersites of Hemagglutinin (HA). Although several studies raise the importance of glycosylation in HA antigen design, whether this theory can be widely confirmed remains unclear; which influenza HA with an altered glycosylation profile could impact the amplitude and focus of the host immune response. Here, we evaluated the characteristics and efficacy of deglycosylated modified HA proteins, including monoglycosylated HA (HAmg), unglycosylated HA (HAug), and fully glycosylated HA (HAfg), without treatment with H3N2 Wisconsin/67/2005. Our results showed that HAug could induce a cross-strain protective immune response in mice against both H3N2 and H7N9 subtypes with better antibody-dependent cellular cytotoxicity (ADCC) than the HAmg- and HAfg-immunized groups, which suggested that highly conserved epitopes that were masked by surface glycosylation may be exposed and thus promote the induction of broad antibodies that recognize the hidden epitopes. This strategy may also supplement the direction of deglycosylated modified HA for universal influenza vaccines.

19.
Nat Commun ; 13(1): 1533, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318331

RESUMEN

Pseudorabies virus (PRV) is a major etiological agent of swine infectious diseases and is responsible for significant economic losses in the swine industry. Recent data points to human viral encephalitis caused by PRV infection, suggesting that PRV may be able to overcome the species barrier to infect humans. To date, there is no available therapeutic for PRV infection. Here, we report the near-atomic structures of the PRV A-capsid and C-capsid, and illustrate the interaction that occurs between these subunits. We show that the C-capsid portal complex is decorated with capsid-associated tegument complexes. The PRV capsid structure is highly reminiscent of other α-herpesviruses, with some additional structural features of ß- and γ-herpesviruses. These results illustrate the structure of the PRV capsid and elucidate the underlying assembly mechanism at the molecular level. This knowledge may be useful for the development of oncolytic agents or specific therapeutics against this arm of the herpesvirus family.


Asunto(s)
Herpesvirus Suido 1 , Animales , Cápside , Proteínas de la Cápside , Porcinos , Estructuras Virales
20.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35637645

RESUMEN

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA