Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 124(6): 3494-3589, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478597

RESUMEN

The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.

2.
Proc Natl Acad Sci U S A ; 120(52): e2307477120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134195

RESUMEN

Potassium-ion batteries (PIBs) have attracted ever-increasing interest due to the abundant potassium resources and low cost, which are considered a sustainable energy storage technology. However, the graphite anodes employed in PIBs suffer from low capacity and sluggish reaction kinetics caused by the large radius of potassium ions. Herein, we report nitrogen-doped, defect-rich hollow carbon nanospheres with contact curved interfaces (CCIs) on carbon nanotubes (CNTs), namely CCI-CNS/CNT, to boost both electron transfer and potassium-ion adsorption. Density functional theory calculations validate that engineering CCIs significantly augments the electronic state near the Fermi level, thus promoting electron transfer. In addition, the CCIs exhibit a pronounced affinity for potassium ions, promoting their adsorption and subsequently benefiting potassium storage. As a result, the rationally designed CCI-CNS/CNT anode shows remarkable cyclic stability and rate capability. This work provides a strategy for enhancing the potassium storage performance of carbonaceous materials through CCI engineering, which can be further extended to other battery systems.

3.
Chem Soc Rev ; 53(8): 3829-3895, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436202

RESUMEN

Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.

4.
Small ; : e2401957, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682730

RESUMEN

Prussian blue analogues (PBAs) have emerged as highly promising cathode materials for sodium-ion batteries (SIBs) due to their affordability, facile synthesis, porous framework, and high theoretical capacity. Despite their considerable potential, practical applications of PBAs face significant challenges that limit their performance. This review offers a comprehensive retrospective analysis of PBAs' development history as cathode materials, delving into their reaction mechanisms, including charge compensation and ion diffusion mechanisms. Furthermore, to overcome these challenges, a range of improvement strategies are proposed, encompassing modifications in synthesis techniques and enhancements in structural stability. Finally, the commercial viability of PBAs is examined, alongside discussions on advanced synthesis methods and existing concerns regarding cost and safety, aiming to foster ongoing advancements of PBAs for practical SIBs.

5.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831422

RESUMEN

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Asunto(s)
Adenosina Trifosfatasas , Antioxidantes , Microbioma Gastrointestinal , Yeyuno , Animales , Yeyuno/microbiología , Yeyuno/enzimología , Antioxidantes/metabolismo , Microbioma Gastrointestinal/fisiología , Adenosina Trifosfatasas/metabolismo , Ovinos , Masculino , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
6.
Chem Soc Rev ; 52(9): 3215-3264, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37073529

RESUMEN

MXenes have been extensively studied due to their high metallic conductivity, hydrophilic properties, tunable layer structure and attractive surface chemistry, making them highly desirable for energy-related applications. However, slow catalytic reaction kinetics and limited active sites have severely impeded their further practical applications. Surface engineering of MXenes has been rationally designed and investigated to regulate their electronic structure, increase the density of active sites, optimize the binding energy, and thus boost the electrocatalytic performance. In this review, we comprehensively summarized the surface engineering strategies for MXene nanostructures, including surface termination engineering, defect engineering, heteroatom doping engineering (metals or non-metals), secondary material engineering, and extension to MXene analogues. By identifying the roles of each component in the engineered MXenes at the atomic level, their intrinsic active sites have been discussed to establish the relationships between the atomic structures and catalytic activities. We highlighted the state-of-the-art progress of MXenes in electrochemical conversion reactions including hydrogen, oxygen, carbon dioxide, nitrogen and sulfur conversion reactions. The challenges and perspectives of MXene-based catalysts for electrochemical conversion reactions are presented to inspire more efforts toward the understanding and development of MXene-based materials to meet the ever-growing demand for a sustainable future.

7.
Nano Lett ; 23(11): 4908-4915, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37216428

RESUMEN

The electrocatalytic conversion of polysulfides is crucial to lithium-sulfur batteries and mainly occurs at triple-phase interfaces (TPIs). However, the poor electrical conductivity of conventional transition metal oxides results in limited TPIs and inferior electrocatalytic performance. Herein, a TPI engineering approach comprising superior electrically conductive layered double perovskite PrBaCo2O5+δ (PBCO) is proposed as an electrocatalyst to boost the conversion of polysulfides. PBCO has superior electrical conductivity and enriched oxygen vacancies, effectively expanding the TPI to its entire surface. DFT calculation and in situ Raman spectroscopy manifest the electrocatalytic effect of PBCO, proving the critical role of enhanced electrical conductivity of this electrocatalyst. PBCO-based Li-S batteries exhibit an impressive reversible capacity of 612 mAh g-1 after 500 cycles at 1.0 C with a capacity fading rate of 0.067% per cycle. This work reveals the mechanism of the enriched TPI approach and provides novel insight into designing new catalysts for high-performance Li-S batteries.

8.
Angew Chem Int Ed Engl ; : e202409838, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058295

RESUMEN

Rechargeable aqueous zinc-ion (Zn-ion) batteries are widely regarded as important candidates for next-generation energy storage systems for low-cost renewable energy storage. However, the development of Zn-ion batteries is currently facing significant challenges due to uncontrollable Zn dendrite growth and severe parasitic reactions on Zn metal anodes. Herein, we report an innovative strategy to improve the performance of aqueous Zn-ion batteries by leveraging the self-assembly of bovine serum albumin (BSA) into a bilayer configuration on Zn metal anodes. BSA's hydrophilic and hydrophobic fragments form unique and intelligent ion channels, which regulate the migration of Zn ions and facilitate their desolvation process, significantly diminishing parasitic reactions on Zn anodes and leading to a uniform Zn deposition along the Zn (002) plane. Notably, the Zn||Zn symmetric cell with BSA as the electrolyte additive demonstrated a stable cycling performance for up to 2400 hours at a high current density of 10 mA cm-2. This work demonstrates the pivotal role of self-assembled protein bilayer structures in improving the durability of Zn anodes in aqueous Zn-ion batteries.

9.
Angew Chem Int Ed Engl ; 63(29): e202405750, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660918

RESUMEN

The high energy density and cost-effectiveness of chloride-ion batteries (CIBs) make them promising alternatives to lithium-ion batteries. However, the development of CIBs is greatly restricted by the lack of compatible electrolytes to support cost-effective anodes. Herein, we present a rationally designed solid polycationic electrolyte (SPE) to enable room-temperature chloride-ion batteries utilizing aluminum (Al) metal as an anode. This SPE endows the CIB configuration with improved air stability and safety (i.e. free of flammability and liquid leakage). A high ionic conductivity (1.3×10-2 S cm-1 at 25 °C) has been achieved by the well-tailored coordination structure of the SPE. Meanwhile, the solid polycationic electrolyte ensures stable electrodes|electrolyte interfaces, which effectively inhibit the growth of dendrites on the Al anodes and degradation of the FeOCl cathodes. The Al|SPE|FeOCl chloride-ion batteries showcased a high discharge capacity around 250 mAh g-1 (based on the cathodes) and extended lifespan. Our electrolyte design opens a new avenue for developing low-cost chloride-ion batteries.

10.
Angew Chem Int Ed Engl ; 63(4): e202315947, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059770

RESUMEN

Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.

11.
J Am Chem Soc ; 145(4): 2669-2678, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651291

RESUMEN

Two-dimensional (2D) nanofluidic membranes have shown great promise in harvesting osmotic energy from the salinity difference between seawater and fresh water. However, the output power densities are strongly hampered by insufficient membrane permselectivity. Herein, we demonstrate that vacancy engineering is an effective strategy to enhance the permselectivity of 2D nanofluidic membranes to achieve high-efficiency osmotic energy generation. Phosphorus vacancies were facilely created on NbOPO4 (NbP) nanosheets, which remarkably enlarged their negative surface charge. As verified by both experimental and theoretical investigations, the vacancy-introduced NbP (V-NbP) exhibited fast transmembrane ion migration and high ionic selectivity originating from the improved electrostatic affinity of cations. When applied in a natural river water|seawater osmotic power generator, the macroscopic-scale V-NbP membrane delivered a record-high power density of 10.7 W m-2, far exceeding the commercial benchmark of 5.0 W m-2. This work endows the remarkable potential of vacancy engineering for 2D materials in nanofluidic energy devices.

12.
Small ; 19(30): e2300843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37035959

RESUMEN

Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.

13.
Small ; 19(41): e2302639, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37309285

RESUMEN

Rational design and development of highly efficient hydrogen evolution reaction (HER) electrocatalysts is of great significance for the development of green water electrolysis hydrogen production technology. Ru-engineered 1D PtCo-Ptrich nanowires (Ru-Ptrich Co NWs) are fabricated by a facile electrodeposition method. The rich Pt surface on 1D Pt3 Co contributes to the fully exposed active sites and enhanced intrinsic catalytic activity (co-engineered by Ru and Co atoms) for HER. The incorporation of Ru atoms can not only accelerate the water dissociation in alkaline condition to provide sufficient H* but also modulate the electronic structure of Pt to achieve optimized H* adsorption energy. As a result, Ru-Ptrich Co NWs have exhibited ultralow HER overpotentials (η) of 8 and 112 mV to achieve current densities of 10 and 100 mA cm-2 in 1 m KOH, respectively, which far exceed those of commercial Pt/C catalyst (η10  = 29 mV, η100  = 206 mV). Density functional theory (DFT) calculations further demonstrate that the incorporated Ru atoms possess strong water adsorption capacity (-0.52 vs -0.12 eV for Pt), facilitating water dissociation. The Pt atoms in the outermost Pt-rich skin of Ru-Ptrich Co NWs achieve optimized H* adsorption free energy (ΔGH* ) of -0.08 eV, boosting hydrogen generation.

14.
Anim Biotechnol ; 34(4): 1362-1376, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35085474

RESUMEN

Understanding the effects of weaning on the changes of digestive function could help to design efficient intervention strategies for promoting the development of the lamb during the early stages of life. In this study, 24 lambs were divided into two groups (control group, lambs were not weaned; and weaning group, lambs were weaned at 21 days of age). The growth, nutrient digestion, gastrointestinal enzyme activity, plasma biochemical indicators, and intestinal microbiota at 7-49 days were determined, as well as the impact of early weaning. The nutrient digestion changed rapidly with age, especially at 14-28 days (p < 0.05). Weaning reduced the dry matter (DM), crude protein (CP), and ether extract (EE) intake and digestion, but increased the starch, neutral detergent fiber (NDF), and acid detergent fiber (ADF) intake and digestion (p < 0.05). Weaning did not affect the overall jejunal microbiota (p > 0.05), but affected the relative abundance of certain bacteria taxa (p < 0.05). Lactic acid-producing bacteria, such as Olsenella, Bacillus, Sharpea, and Bifidobacterium are closely related to CP or EE digestion and growth performance (p < 0.05). In summary, we delineated the pattern of nutrient digestion and intestinal microbiota development in young lambs, and the impact of early weaning.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Animales , Ovinos , Digestión , Destete , Detergentes , Nutrientes/metabolismo , Oveja Doméstica , Alimentación Animal/análisis , Dieta/veterinaria
15.
Nano Lett ; 22(3): 1225-1232, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35044774

RESUMEN

Rationally electronic structure engineering of nanocomposite electrodes shows great promise for enhancing the electrochemical performance of rechargeable batteries. Herein, we report antimony single atoms and quantum dots (∼5 nm) codecorated Ti3C2Tx MXene-based aerogels (Sb SQ@MA) for high-performance potassium-ion batteries (PIBs). We found that the atomically dispersed Sb could modify the electronic structure of the Sb/Ti3C2Tx composite, improve the charge transfer kinetics, and enhance the potassium storage capability at the heterointerfaces. Additionally, the MXene-based aerogel with rich surface functional groups and defects provides abundant anchoring sites and endows the composite reinforced structural stability and highly efficient electron transfer. The high loading of Sb (∼60.3 wt %) with short ionic transport pathways is desired potassium reservoirs. These features synergistically enhance the rate and cycling performance of the Sb SQ@MA electrodes in PIBs. This work has demonstrated an enlightening technique to tailor the interface activity of heterostructured electrodes for electrochemical applications.

16.
Angew Chem Int Ed Engl ; 62(17): e202301833, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853880

RESUMEN

The oxygen reduction reaction (ORR) on transition single-atom catalysts (SACs) is sustainable in energy-conversion devices. However, the atomically controllable fabrication of single-atom sites and the sluggish kinetics of ORR have remained challenging. Here, we accelerate the kinetics of acid ORR through a direct O-O cleavage pathway through using a bi-functional ligand-assisted strategy to pre-control the distance of hetero-metal atoms. Concretely, the as-synthesized Fe-Zn diatomic pairs on carbon substrates exhibited an outstanding ORR performance with the ultrahigh half-wave potential of 0.86 V vs. RHE in acid electrolyte. Experimental evidence and density functional theory calculations confirmed that the Fe-Zn diatomic pairs with a specific distance range of around 3 Å, which is the key to their ultrahigh activity, average the interaction between hetero-diatomic active sites and oxygen molecules. This work offers new insight into atomically controllable SACs synthesis and addresses the limitations of the ORR dissociative mechanism.

17.
Angew Chem Int Ed Engl ; 62(36): e202308349, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37452696

RESUMEN

Electrocatalysts for highly efficient oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices. Single-atom catalysts with maximized metal utilization and altered electronic structure are the most promising alternatives to replace current benchmark precious metals. However, the atomic level understanding of the functional role for each species at the anchoring sites is still unclear and poorly elucidated. Herein, we report Fe single atom catalysts with the sulfur and oxygen functional groups near the atomically dispersed metal centers (Fe1/NSOC) for highly efficient ORR. The Fe1/NSOC delivers a half-wave potential of 0.92 V vs. RHE, which is much better than those of commercial Pt/C (0.88 V), Fe single atoms on N-doped carbon (Fe1/NC, 0.89 V) and most reported nonprecious metal catalysts. The spectroscopic measurements reveal that the presence of sulfur group induces the formation of epoxy groups near the FeN4S2 centers, which not only modulate the electronic structure of Fe single atoms but also participate the catalytic process to improve the kinetics. The density functional theory calculations demonstrate the existence of sulfur and epoxy group engineer the charges of Fe reactive center and facilitate the reductive release of OH* (rate-limiting step), thus boosting the overall oxygen reduction efficiency.

18.
Angew Chem Int Ed Engl ; 62(50): e202306904, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37650332

RESUMEN

The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.

19.
Small ; 18(32): e2202394, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35853722

RESUMEN

Single-atom catalysts (SACs) have attracted tremendous research interest due to their unique atomic structure, maximized atom utilization, and remarkable catalytic performance. Among the SACs, the carbon-supported SACs have been widely investigated due to their easily controlled properties of the carbon substrates, such as the tunable morphologies, ordered porosity, and abundant anchoring sites. The electrochemical performance of carbon-supported SACs is highly related to the morphological structure of carbon substrates (macro-environment) and the local coordination environments of center metals (micro-environment). This review aims to provide a comprehensive summary on the macro/micro-environment regulating carbon-supported SACs for highly efficient hydrogen/oxygen conversion reactions. The authors first summarize the macro-environment engineering strategies of carbon-supported SACs with altered specific surface areas and porous properties of the carbon substrates, facilitating the mass diffusion kinetics and structural stability. Then the micro-environment engineering strategies of carbon-supported SACs are discussed with the regulated atomic structure and electronic structure of metal centers, boosting the catalytic performance. Insights into the correlation between the co-boosted effect from the macro/micro-environments and catalytic activity for hydrogen/oxygen conversion reactions are summarized and discussed. Finally, the challenges and perspectives are addressed in building highly efficient carbon-supported SACs for practical applications.


Asunto(s)
Carbono , Hidrógeno , Carbono/química , Catálisis , Metales/química , Oxígeno
20.
Small ; 18(28): e2202252, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35710700

RESUMEN

Ammonia, the second most-produced chemical, is widely used in agricultural and industrial applications. However, traditional industrial ammonia production dominated by the Haber-Bosch process presents huge resource and environment issues due to the massive energy consumption and CO2 emission. The newly emerged nitrogen fixation technology, photocatalytic N2 reduction reaction (p-NRR), uses clean solar energy with zero-emission, holding great prospect to achieve sustainable ammonia synthesis. Although great efforts are made, the p-NRR catalysts still suffer from poor N2 adsorption and activation, inferior light absorption, and fast recombination of photocarriers. Due to the tunable electronic structure of the metal-free polymeric graphitic carbon nitride (g-C3 N4 ), the above-mentioned issues can be significantly alleviated, making it the most promising p-NRR photocatalyst. This review summarizes the recent development of g-C3 N4 -based catalysts for p-NRR, including the working principle of p-NRR catalysts, the challenges of developing p-NRR catalysts, and corresponding solutions. Particularly, the roles of defect engineering and heterojunction construction on g-C3 N4 to the enhancement of photocatalytic performances are emphasized. In addition, computational studies are introduced to deepen the understanding of reaction pathways. At last, perspectives are provided on the development of p-NRR catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA