Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335573

RESUMEN

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Pseudomonas putida , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Proteína Transportadora de Acilo/metabolismo , Escherichia coli/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos , Glucógeno Sintasa , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
2.
Mol Microbiol ; 119(2): 252-261, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537550

RESUMEN

The genomes of the best-studied pseudomonads, Pseudomonas aeruginosa and Pseudomonas putida, which share 85% of the predicted coding regions, contain a fabA fabB operon (demonstrated in P. aeruginosa, putative in P. putida). The enzymes encoded by the fabA and fabB genes catalyze the introduction of a double bond into a 10-carbon precursor which is elongated to the 16:1Δ9 and 18:1Δ11 unsaturated fatty acyl chains required for functional membrane phospholipids. A detailed analysis of transcription of the P. putida fabA fabB gene cluster showed that fabA and fabB constitute an operon and disclosed an unexpected and essential fabB promoter located within the fabA coding sequence. Inactivation of the fabA fabB operon fails to halt the growth of P. aeruginosa PAO1 but blocks growth of P. putida F1 unless an exogenous unsaturated fatty acid is provided. We report that the asymmetry between these two species is due to the P. aeruginosa PAO1 desA gene which encodes a fatty acid desaturase that introduces double bonds into the 16-carbon acyl chains of membrane phospholipids. Although P. putida F1 encodes a putative DesA homolog that is 84% identical to the P. aeruginosa PAO1, the protein fails to provide sufficient unsaturated fatty acid synthesis for growth when the FabA FabB pathway is inactivated. We report that the P. putida F1 DesA homolog can functionally replace the P. aeruginosa DesA. Hence, the defect in P. putida F1 desaturation is not due to a defective P. putida F1 DesA protein but probably to a weakly active component of the electron transfer process.


Asunto(s)
Ácidos Grasos Insaturados , Fosfolípidos , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regiones Promotoras Genéticas
3.
Appl Environ Microbiol ; 90(3): e0225623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38415624

RESUMEN

The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from ß-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Acil-Butirolactonas , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Ácidos Grasos/metabolismo , Bacterias/metabolismo , Escherichia coli/metabolismo , Acetilcoenzima A/metabolismo
4.
PLoS Genet ; 17(8): e1009693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351909

RESUMEN

The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.


Asunto(s)
Proteínas de Unión al ADN/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Proteínas de Unión al ADN/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Células HL-60 , Humanos , Leucopoyesis , Masculino , Proteolisis , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
BMC Biol ; 21(1): 253, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953260

RESUMEN

BACKGROUND: Circulating cell-free DNA (cfDNA) is a pool of short DNA fragments mainly released from apoptotic hematopoietic cells. Nevertheless, the precise physiological process governing the DNA fragmentation and molecular profile of cfDNA remains obscure. To dissect the DNA fragmentation process, we use a human leukemia cell line HL60 undergoing apoptosis to analyze the size distribution of DNA fragments by shallow whole-genome sequencing (sWGS). Meanwhile, we also scrutinize the size profile of plasma cfDNA in 901 healthy human subjects and 38 dogs, as well as 438 patients with six common cancer types by sWGS. RESULTS: Distinct size distribution profiles were observed in the HL60 cell pellet and supernatant, suggesting fragmentation is a stepwise process. Meanwhile, C-end preference was seen in both intracellular and extracellular cfDNA fragments. Moreover, the cfDNA profiles are characteristic and conserved across mammals. Compared with healthy subjects, distinct cfDNA profiles with a higher proportion of short fragments and lower C-end preference were found in cancer patients. CONCLUSIONS: Our study provides new insight into fragmentomics of circulating cfDNA processing, which will be useful for early diagnosis of cancer and surveillance during cancer progression.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Humanos , Animales , Perros , Fragmentación del ADN , ADN , Apoptosis , Mamíferos
6.
Mol Plant Microbe Interact ; 36(2): 119-130, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36515967

RESUMEN

Most bacteria use type II fatty acid synthesis (FAS) systems for synthesizing fatty acids, of which the conserved FabA-FabB pathway is considered to be crucial for unsaturated fatty acid (UFA) synthesis in gram-negative bacteria. Xanthomonas campestris pv. campestris, the phytopathogen of black rot disease in crucifers, produces higher quantities of UFAs under low-temperature conditions for increasing membrane fluidity. The fabA and fabB genes were identified in the X. campestris pv. campestris genome by BLAST analysis; however, the growth of the X. campestris pv. campestris fabA and fabB deletion mutants was comparable to that of the wild-type strain in nutrient and minimal media. The X. campestris pv. campestris ΔfabA and ΔfabB strains produced large quantities of UFAs and, altogether, these results indicated that the FabA-FabB pathway is not essential for growth or UFA synthesis in X. campestris pv. campestris. We also observed that the expression of X. campestris pv. campestris fabA and fabB restored the growth of the temperature-sensitive Escherichia coli fabA and fabB mutants CL104 and CY242, respectively, under non-permissive conditions. The in-vitro assays demonstrated that the FabA and FabB proteins of X. campestris pv. campestris catalyzed FAS. Our study also demonstrated that the production of diffusible signal factor family signals that mediate quorum sensing was higher in the X. campestris pv. campestris ΔfabA and ΔfabB strains and greatly reduced in the complementary strains, which exhibited reduced swimming motility and attenuated host-plant pathogenicity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Xanthomonas campestris , Xanthomonas campestris/metabolismo , Ácidos Grasos/metabolismo , Escherichia coli/genética , Percepción de Quorum , Ácidos Grasos Insaturados/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Hepatology ; 76(4): 967-981, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35108400

RESUMEN

BACKGROUND AND AIMS: Metastasis is the primary cause of cancer mortality, and colorectal cancer (CRC) frequently metastasizes to the liver. Our previous studies demonstrated the critical role of KIAA1199 in tumor invasion and metastasis in CRC. In the present study, we described an immune regulatory effect of KIAA1199 that creates a permissive environment for metastasis. APPROACH AND RESULTS: Flow cytometry was used to examine the effects of KIAA1199 on the infiltration of tumor immune cells. Neutrophils and T cells were isolated, stimulated, and/or cultured for in vitro function assays. In the patients with CRC, high expression levels of KIAA1199 were associated with an increased neutrophil infiltration into the liver. This result was further validated in mouse metastasis models. The increased influx of neutrophils contributed to the KIAA1199-driven CRC liver metastasis. Mechanistically, KIAA1199 activated the TGFß signaling pathway by interacting with the TGFBR1/2 to stimulate CXCL1 and CXCL3 production, thereby driving the aggregation of immunosuppressive neutrophils. Genetic blockade or pharmacologic inhibition of KIAA1199 restored tumor immune infiltration, impeded tumor progression, and potentiated response to immune checkpoint blockade (ICB). CONCLUSIONS: These findings indicated that KIAA1199 could facilitate the liver infiltration of immunosuppressive neutrophils via the TGFß-chemokine (C-X-C motif) ligand (CXCL)3/1-CXCR2 axis, which might be clinically targeted for the treatment of hepatic metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Neoplasias Colorrectales/patología , Inhibidores de Puntos de Control Inmunológico , Ligandos , Ratones , Infiltración Neutrófila , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta
8.
Opt Express ; 31(13): 22204-22224, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381300

RESUMEN

Wide-field imaging systems are faced with the problem of massive image information processing and transmission. Due to the limitation of data bandwidth and other factors, it is difficult for the current technology to process and transmit massive images in real-time. With the requirement for fast response, the demand for real-time on-orbit image processing is increasing. In practice, nonuniformity correction is an important preprocessing step to improve the quality of surveillance images. This paper presents a new real-time on-orbit nonuniform background correction method, which only uses the local pixels of a single row output in real-time, breaking the dependence of the traditional algorithm on the whole image information. Combined with the FPGA pipeline design, when the local pixels of a single row are read out, the processing is completed, and no cache is required at all, which saves the resource overhead in hardware design. It achieves microsecond-level ultra-low latency. The experimental results show that under the influence of strong stray light and strong dark current, our real-time algorithm has a better image quality improvement effect compared with the traditional algorithm. It will greatly help the on-orbit real-time moving target recognition and tracking.

9.
Nucleic Acids Res ; 49(7): 3981-3996, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33721023

RESUMEN

The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/genética , Plásmidos , Proteínas de Unión al ARN/fisiología , Antibacterianos/farmacología , Colistina/farmacología
10.
Pestic Biochem Physiol ; 196: 105617, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945253

RESUMEN

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases of chili worldwide. Florylpicoxamid is a new quinone inside inhibitor (QiI) fungicide, which shows intensively inhibitory activity against C. scovillei. Currently, florylpicoxamid is in the registration process to control chili anthracnose in China. This study investigated the risk of resistance and resistance genetic mechanism of C. scovillei to florylpicoxamid. Baseline sensitivity of 141C. scovillei isolates to florylpicoxamid was established with an average EC50 value of 0.2328 ± 0.0876 µg/mL. A total of seven stable florylpicoxamid-resistant mutants were obtained with resistance factors ranging from 41 to 276. The mutants showed similar or weaker traits in mycelial growth, sporulation, conidial germination and pathogenicity than their parental isolates. Generally, the resistance risk of C. scovillei to florylpicoxamid would be moderate. In addition, there was no cross-resistance between florylpicoxamid and the commercially available fungicides tested. A37V and S207L mutations in the cytochrome b protein were detected in four high-resistance and three moderate-resistance mutants, respectively, of which, S207L is a new mutation. Molecular docking showed that the two mutations conferred different resistance levels to florylpicoxamid. These results provide a new perspective for QiI fungicide-resistance mechanism and may help in the reasonable use of florylpicoxamid against chili anthracnose in the future.


Asunto(s)
Fungicidas Industriales , Mutación Puntual , Citocromos b/genética , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Fungicidas Industriales/farmacología
11.
Pestic Biochem Physiol ; 194: 105471, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532345

RESUMEN

Pseudomonas syringae (P. syringae) is a highly prevalent Gram-negative pathogen with over 60 pathogenic variants that cause yield losses of up to 80% in various crops. Traditional control methods mainly involve the application of antibiotics to inactivate pathogenic bacteria, but large-scale application of antibiotics has led to the development of bacterial resistance. Gram-negative pathogens including P. syringae commonly use the type III secretion system (T3SS) as a transport channel to deliver effector proteins into host cells, disrupting host defences and facilitating virulence, providing a novel target for antibacterial drug development. In this study, we constructed a high-throughput screening reporter system based on our previous work to screen for imidazole, oxazole and thiazole compounds. The screening indicated that the three compounds (II-14, II-15 and II-24) significantly inhibited hrpW and hrpL gene promoter activity without influencing the growth of P. syringae, and the inhibitory activity was better than that of the positive control sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN) at 50 µM. Three compounds suppressed the transcript levels of representative T3SS genes to different degrees, suggesting that the compounds may suppress the expression of T3SS by modulating the HrpR/S-HrpL regulatory pathway. Inoculation experiments indicated that all three compounds suppressed the pathogenicity of Pseudomonas syringae pv. tomato DC3000 in tomato and Pseudomonas syringae pv. phaseolicola 1448A in bean to varying degrees. One representative compound, II-15, significantly inhibited the secretion of the Pst DC3000 AvrPto effector protein. These findings provide a theoretical basis for the development of novel P. syringae T3SS inhibitors for application in disease prevention and control.


Asunto(s)
Proteínas de Unión al ADN , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo III/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas syringae , Virulencia , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
12.
J Biol Chem ; 296: 100365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33545175

RESUMEN

The FabG 3-ketoacyl-acyl carrier protein (ACP) reductase of Escherichia coli has long been thought to be a classical member of the short-chain alcohol dehydrogenase/reductase (SDR) family. FabG catalyzes the essential 3-ketoacyl-ACP reduction step in the FAS II fatty acid synthesis pathway. Site-directed mutagenesis studies of several other SDR enzymes has identified three highly conserved amino acid residues, Ser, Tyr, and Lys, as the catalytic triad. Structural analyses of E. coli FabG suggested the triad S138-Y151-K155 to form a catalytically competent active site. To test this hypothesis, we constructed a series of E. coli FabG mutants and tested their 3-ketoacyl-ACP reductase activities both in vivo and in vitro. Our data show that plasmid-borne FabG mutants, including the double and triple mutants, restored growth of E. coli and Salmonella enterica fabG temperature-sensitive mutant strains under nonpermissive conditions. In vitro assays demonstrated that all of the purified FabG mutant proteins maintained fatty acid synthetic ability, although the activities of the single mutant proteins were 20% to 50% lower than that of wildtype FabG. The S138A, Y151F, and K155A residue substitutions were confirmed by tandem mass spectral sequencing of peptides that spanned all three residues. We conclude that FabG is not a classical short-chain alcohol dehydrogenase/reductase, suggesting that an alternative mode of 3-ketoacyl-ACP reduction awaits discovery.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/fisiología , Oxidorreductasas de Alcohol/fisiología , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Prueba de Complementación Genética/métodos , Modelos Moleculares , Oxidorreductasas/metabolismo , Unión Proteica/genética
13.
J Biol Chem ; 297(2): 100920, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181948

RESUMEN

The Pseudomonas putida F1 genome contains five genes annotated as encoding 3-ketoacyl-acyl carrier protein (ACP) synthases. Four are annotated as encoding FabF (3-ketoacyl-ACP synthase II) proteins, and the fifth is annotated as encoding a FabB (3-ketoacyl-ACP synthase I) protein. Expression of one of the FabF proteins, FabF2, is cryptic in the native host and becomes physiologically important only when the repressor controlling fabF2 transcription is inactivated. When derepressed, FabF2 can functionally replace FabB, and when expressed from a foreign promoter, had weak FabF activity. Complementation of Escherichia coli fabB and fabF mutant strains with high expression showed that P. putida fabF1 restored E. coli fabF function, whereas fabB restored E. coli fabB function and fabF2 restored the functions of both E. coli fabF and fabB. The P. putida ΔfabF1 deletion strain was almost entirely defective in synthesis of cis-vaccenic acid, whereas the ΔfabB strain is an unsaturated fatty acid (UFA) auxotroph that accumulated high levels of spontaneous suppressors in the absence of UFA supplementation. This was due to increased expression of fabF2 that bypasses loss of fabB because of the inactivation of the regulator, Pput_2425, encoded in the same operon as fabF2. Spontaneous suppressor accumulation was decreased by high levels of UFA supplementation, whereas competition by the P. putida ß-oxidation pathway gave increased accumulation. The ΔfabB ΔfabF2 strain is a stable UFA auxotroph indicating that suppressor accumulation requires FabF2 function. However, at low concentrations of UFA supplementation, the ΔfabF2 ΔPput_2425 double-mutant strain still accumulated suppressors at low UFA concentrations.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Pseudomonas putida/metabolismo , Prueba de Complementación Genética
14.
Mol Plant Microbe Interact ; 35(4): 323-335, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286156

RESUMEN

In Xanthomonas spp., the biosynthesis of the yellow pigment xanthomonadin and fatty acids originates in the type II polyketide synthase (PKS II) and fatty acid synthase (FAS) pathways, respectively. The acyl carrier protein (ACP) is the central component of PKS II and FAS and requires posttranslational phosphopantetheinylation to initiate these pathways. In this study, for the first time, we demonstrate that the posttranslational modification of ACPs in X. campestris pv. campestris is performed by an essential 4'-phosphopantetheinyl transferase (PPTase), XcHetI (encoded by Xc_4132). X. campestris pv. campestris strain XchetI could not be deleted from the X. campestris pv. campestris genome unless another PPTase-encoding gene such as Escherichia coli acpS or Pseudomonas aeruginosa pcpS was present. Compared with wild-type strain X. campestris pv. campestris 8004 and mutant XchetI::PapcpS, strain XchetI::EcacpS failed to generate xanthomonadin pigments and displayed reduced pathogenicity for the host plant, Brassica oleracea. Further experiments showed that the expression of XchetI restored the growth of E. coli acpS mutant HT253 and, when a plasmid bearing XchetI was introduced into P. aeruginosa, pcpS, which encodes the sole PPTase in P. aeruginosa, could be deleted. In in vitro enzymatic assays, XcHetI catalyzed the transformation of 4'-phosphopantetheine from coenzyme A to two X. campestris pv. campestris apo-acyl carrier proteins, XcAcpP and XcAcpC. All of these findings indicate that XcHetI is a surfactin PPTase-like PPTase with a broad substrate preference. Moreover, the HetI-like PPTase is ubiquitously conserved in Xanthomonas spp., making it a potential new drug target for the prevention of plant diseases caused by Xanthomonas.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Xanthomonas campestris , Xanthomonas , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Pseudomonas aeruginosa/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas campestris/metabolismo
15.
Clin Gastroenterol Hepatol ; 20(5): 1163-1170, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34798334

RESUMEN

BACKGROUND & AIMS: There are limited data regarding the safety and efficacy of cold snare polypectomy (CSP) for large colorectal polyps. We evaluated factors affecting the clinical outcomes of CSP for polyps between 5 and 15 mm in size. METHODS: This was a prospective single-center observational study involving 1000 patients undergoing colonoscopy. Polyps (5-15 mm) were removed using CSP, and biopsies were taken from the resection margin. The primary outcome was the incomplete resection rate (IRR), and was determined by the presence of residual neoplasia on biopsy. Correlations between IRR and polyp size, morphology, histology, and resection time were assessed by generalized estimating equation model. RESULTS: A total of 440 neoplastic polyps were removed from 261 patients. The overall IRR was 2.27%, 1.98% for small (5-9 mm) vs 3.45% for large (10-15 mm) polyps (P = .411). In univariate analysis, the IRR was more likely to be related to sessile serrated lesions (odds ratio [OR], 6.93; 95% confidence interval [CI], 1.88-25.45; P = .004), piecemeal resection (OR, 11.83; 95% CI, 1.20-116.49; P = .034), and prolonged resection time >60 seconds (OR, 7.56; 95% CI, 1.75-32.69; P = .007). In multivariable regression analysis, sessile serrated lesions (OR, 6.45; 95% CI, 1.48-28.03; P = .013) and resection time (OR, 7.39; 95% CI, 1.48-36.96; P = .015, respectively) were independent risk factors for IRR. Immediate bleeding was more frequent with resection of large polyps (6.90% vs 1.42%; P = .003). No recurrence was seen on follow-up colonoscopy in 37 cases with large polyps. CONCLUSIONS: CSP is safe and effective for removal of colorectal polyps up to 15 mm in size, with a low IRR. (ClinicalTrials.gov; Number: NCT03647176).


Asunto(s)
Pólipos del Colon , Biopsia , Pólipos del Colon/patología , Colonoscopía/efectos adversos , Humanos , Márgenes de Escisión , Estudios Prospectivos
16.
Neoplasma ; 69(3): 538-549, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35188401

RESUMEN

Gallbladder cancer is a malignant tumor with a high mortality rate. Accumulating evidence supports that lncRNA MEG3 may halt the progression of gallbladder cancer, while the downstream mechanism is rarely studied. Thus, we aim to investigate the molecular basis of the tumor-suppressing role of lncRNA MEG3 in gallbladder cancer. The expression of lncRNA MEG3 and CXCL3 was measured in patient serum and cell lines of gallbladder cancer. The viability, apoptosis, migration, and invasion of gallbladder cancer cells were assessed following ectopic MEG3 expression, as detected by CCK-8, flow cytometry, and Transwell assays. The interaction among lncRNA MEG3, EZH2, and CXCL3 was explored through ChIP, RNA pull-down, and RIP assays. The effects of lncRNA MEG3 and CXCL3 on tumor growth were evaluated by a mouse xenograft model. lncRNA MEG3 was expressed at a low level in gallbladder cancer patient serum and cell lines, while CXCL3 was highly expressed. MEG3 overexpression repressed the malignant behaviors of gallbladder cancer cells and promoted their apoptosis. MEG3 was mainly localized in the nucleus. MEG3 bound to EZH2, and EZH2 catalyzed the H3K27 trimethylation of the CXCL3 promoter region. MEG3 downregulated CXCL3 by activating EZH2-mediated H3K27 trimethylation of CXCL3; MEG3 overexpression attenuated cancer cell malignant behaviors in vitro and suppressed tumor growth in vivo in gallbladder cancer by inhibiting CXCL3 expression. Altogether, our results indicate that lncRNA MEG3 impedes gallbladder cancer development via the EZH2-CXCL3 axis, offering potential biomarkers for gallbladder cancer management.


Asunto(s)
Quimiocinas CXC , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias de la Vesícula Biliar , ARN Largo no Codificante , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/patología , Xenoinjertos , Humanos , Metilación , Ratones , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
17.
BMC Pulm Med ; 22(1): 144, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428276

RESUMEN

BACKGROUND: Currently, there is no effective tool for predicting the risk of nonventilator hospital-acquired pneumonia (NV-HAP) in older hospitalized patients. The current study aimed to develop and validate a simple nomogram and a dynamic web-based calculator for predicting the risk of NV-HAP among older hospitalized patients. METHODS: A retrospective evaluation was conducted on 15,420 consecutive older hospitalized patients admitted to a tertiary hospital in China between September 2017 and June 2020. The patients were randomly divided into training (n = 10,796) and validation (n = 4624) cohorts at a ratio of 7:3. Predictors of NV-HAP were screened using the least absolute shrinkage and selection operator method and multivariate logistic regression. The identified predictors were integrated to construct a nomogram using R software. Furthermore, the optimum cut-off value for the clinical application of the model was calculated using the Youden index. The concordance index (C-index), GiViTI calibration belts, and decision curve were analysed to validate the discrimination, calibration, and clinical utility of the model, respectively. Finally, a dynamic web-based calculator was developed to facilitate utilization of the nomogram. RESULTS: Predictors included in the nomogram were the Charlson comorbidity index, NRS-2002, enteral tube feeding, Barthel Index, use of sedatives, use of NSAIDs, use of inhaled steroids, and "time at risk". The C-index of the nomogram for the training and validation cohorts was 0.813 and 0.821, respectively. The 95% CI region of the GiViTI calibration belt in the training (P = 0.694) and validation (P = 0.614) cohorts did not cross the diagonal bisector line, suggesting that the prediction model had good discrimination and calibration. Furthermore, the optimal cut-off values for the training and validation cohorts were 1.58 and 1.74%, respectively. Analysis of the decision curve showed that the nomogram had good clinical value when the threshold likelihood was between 0 and 49%. CONCLUSION: The developed nomogram can be used to predict the risk of NV-HAP among older hospitalized patients. It can, therefore, help healthcare providers initiate targeted medical interventions in a timely manner for high-risk groups.


Asunto(s)
Neumonía Asociada a la Atención Médica , Nomogramas , Anciano , Humanos , Modelos Logísticos , Estudios Retrospectivos , Centros de Atención Terciaria
18.
Biochem Genet ; 60(4): 1298-1312, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34984578

RESUMEN

Increasing reports demonstrate that long noncoding RNAs participate in the regulation of numerous malignancies, cervical cancer included. Although lncRNA LOXL1 antisense RNA 1 has been commonly accepted to be an oncogene in many cancers. Here, the role of LOXL1-AS1 in CC still need to be explored. In this study, LOXL1-AS1 was found elevated in CC tissues and cells. LOXL1-AS1 depletion restrained CC cell proliferation, migration, invasion, and angiogenesis in vivo. Furthermore, we found that LOXL1-AS1 upregulated Lysophospholipase 1 expression via sequestering miR-526b-5p. Rescue assays revealed that overexpression of LYPLA1 reversed the LOXL1-AS1 silencing-induced inhibitory effects on the malignant phenotypes of CC cells. To conclude, this study showed that LOXL1-AS1 facilitates cellular process in CC via functioning as a miR-526b-5p sponge.


Asunto(s)
Aminoácido Oxidorreductasas , MicroARNs , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
19.
J Integr Neurosci ; 21(5): 133, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137969

RESUMEN

BACKGROUND: Progressive axon degeneration is a common pathological feature of neurodegenerative diseases. Cdc42 is a member of the Rho GTPase family that participates in axonogenesis. GSK-3ß is a serine/threonine kinase highly implicated in neuronal development and neurodegeneration. This study aimed to examine whether cdc42 promotes axonogenesis by regulating GSK-3ß activity. METHODS: Hippocampal neurons were isolated from neonatal Sprague-Dawley rats and transfected with designated plasmid vectors to alter the activities of cdc42 and GSK-3ß. LiCl treatment was used to inhibit the GSK-3ß activity in primary neurons. GSK-3ß activity was determined by an enzyme activity assay kit. Immunofluorescence staining was used to detect axons stained with anti-Tau-1 antibody and dendrites stained with anti-MAP2 antibody. RESULTS: Transfection with an active cdc42 mutant (cdc42F28L) decreased the activity of GSK-3ß and induced axonogenesis in primary rat hippocampal neurons, while transfection with a negative cdc42 mutant (cdc42N17) resulted an opposite effect. Moreover, transfection with plasmid vectors carrying wild-type GSK-3ß or a constitutively active GSK3ß mutant (GSK-3ß S9A) increased the activity of GSK-3ß and attenuated axonogenesis of primary hippocampal neurons with excessive cdc42 activity, whereas inhibition of GSK-3ß by LiCl abolished the inhibitory effect of the negative cdc42 mutant on axonogenesis. CONCLUSIONS: This study suggests that cdc42 induces axonogenesis of primary rat hippocampal neurons via inhibiting GSK-3ß activity. These findings support further investigation into the mechanisms of cdc42/GSK-3ß-mediated axonogenesis.


Asunto(s)
Hipocampo , Neuronas , Proteína de Unión al GTP cdc42 , Animales , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/citología , Neuronas/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas , Ratas , Ratas Sprague-Dawley , Serina/farmacología , Proteína de Unión al GTP cdc42/fisiología
20.
Pestic Biochem Physiol ; 181: 105016, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35082039

RESUMEN

The Liriomyza trifolii is a highly invasive polyphagia pest. Understanding the physiological functions of odorant binding proteins (OBPs) in the chemical communication of L. trifolii can lead to effective pest management strategies. Seven full-length OBPs were identified by transcriptome screening of L. trifolii adults. Bioinformatics analyses classified the seven OBPs into two subfamilies (six classic OBPs, one minus-C OBP). The analysis of their expression in different development stages revealed that LtriOBP5 was highly expressed in the larval stage, LtriOBP4 in the pupa stage, and LtriOBP1, 2, 3, 6, 7 in the adult stage; the expression levels were higher in male adults than in females. The analysis of different tissues showed high expression of LtriOBP1, 3, 6, 7 in the antennae, which were selected for in vitro purification. To explore the ligand compounds of OBPs, fluorescence competitive binding experiments were performed. Immunofluorescence localization revealed that LtriOBP1, 3, 6, 7 showed strong binding abilities to plant volatiles and were located in the antennae, implying that LtriOBP1, 3, 6, 7 may play key roles in olfaction, such as host location. LtriOBP6 and LtriOBP7 had strong binding abilities to specific herbivore-induced plant volatiles, suggesting LtriOBP6 and LtriOBP7 may also play critical roles in chemoreception. This study provides preliminary exploration of the olfactory perception mechanism of L. trifolii, which can be used as a basis to design insect behavior regulators and develop highly effective insecticides using mixture of ligands and known pesticides.


Asunto(s)
Proteínas de Insectos , Odorantes , Animales , Antenas de Artrópodos/metabolismo , Proteínas Portadoras , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA