Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(10): 5149-5189, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38566609

RESUMEN

The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.

2.
Nano Lett ; 23(1): 291-297, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563295

RESUMEN

Electrochemical conversion of CO2 into high-value-added chemicals has been considered a promising route to achieve carbon neutrality and mitigate the global greenhouse effect. However, the lack of highly efficient electrocatalysts has limited its practical application. Herein, we propose an ultrafast and green electric explosion method to batch-scale prepare spherical indium (In) nanocrystals (NCs) with abundant metal defects toward high selective electrocatalytic CO2 reduction (CO2RR) to HCOOH. During the electric explosion synthesis process, the Ar atmosphere plays a significant role in forming the spherical In NCs with abundant metal defects instead of highly crystalline In2O3 NCs formed under an air atmosphere. Analysis results reveal that the In NCs possess ultrafast catalytic kinetics and reduced onset potential, which is ascribed to the formation of rich metal defects serving as effective catalytic sites for converting CO2 into HCOOH. This work provides a feasible strategy to massively produce efficient In-based electrocatalysts for electrocatalytic CO2-to-formate conversion.

3.
Nano Lett ; 23(22): 10140-10147, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930176

RESUMEN

Massive production of practical metal or alloy based electrocatalysts for electrocatalytic CO2 reduction reaction is usually limited by energy-extensive consumption, poor reproducibility, and weak adhesion on electrode substrates. Herein, we report the ultrafast thermal shock synthesis and porosity engineering of free-standing Cu-Bi bimetallic nanofoam electrocatalysts with 3D hierarchical porous structure and easily adjustable compositions. During the thermal shock process, the rapid heating and cooling steps in several seconds result in strong interaction between metal nanopowders to form multiphase nanocrystallines with abundant grain boundaries and metastable CuBi intermetallic phase. The subsequent porosity engineering process via acid etching and electroreduction creates highly porous Cu-Bi structures that can increase electrochemically active surface area and facilitate mass/charge transfer. Among the Cu-Bi nanofoam electrodes with different Cu/Bi ratios, the Cu4Bi nanofoam exhibited the highest formate selectivity with a Faradaic efficiency of 92.4% at -0.9 V (vs reversible hydrogen electrode) and demonstrated excellent operation stability.

4.
Adv Sci (Weinh) ; : e2401314, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877663

RESUMEN

Organic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non-metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long-cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.0 V). To address these challenges, a novel long-period stable, low redox potential biphenylzine derivative, [2,2'-biphenazine]-7,7'-tetraol (BPZT) is explored, from the perspective of molecular symmetry and solubility, in conjunction with the effect of the molecular frontier orbital energy levels on its redox potential. Specifically, BPZT exhibited a low potential of 0.29 V (vs SHE) and is virtually insoluble in 2 m H2SO4 electrolyte during cycling. When paired with MnO2@GF or PbO2 cathodes, the resulting PrIBs achieve cell voltages of 1.07 V or 1.44 V, respectively, and maintain a high capacity retention of 90% over 20000 cycles. Additionally, these full batteries can operate stably at a high mass loading of 10 mgBPZT cm-2, highlighting their potential toward long-term energy storage applications.

5.
J Hazard Mater ; 476: 134909, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38905979

RESUMEN

Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.

6.
ISA Trans ; 131: 274-281, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35691742

RESUMEN

This paper studies the resilient group consensus of continuous-time second-order multi-agent systems (MASs) with malicious agents. Adopting the idea that each normal agent ignores the most extreme values from neighbors, synchronous resilient impulsive algorithm based on sampled data is proposed for normal agents with bounded communication delays to achieve group consensus. Meanwhile, asynchronous resilient impulsive algorithm is also proposed for MASs where each agent has its own time clock. Sufficient topological conditions are obtained for solving resilient group consensus under synchronous and asynchronous settings, respectively. Numerical examples are provided to illustrate the effectiveness of the theoretical results.


Asunto(s)
Conducta Impulsiva , Registros , Consenso , Algoritmos , Comunicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA