Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2316569121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330016

RESUMEN

Clay minerals are implicated in the retention of biomolecules within organic matter in many soil environments. Spectroscopic studies have proposed several mechanisms for biomolecule adsorption on clays. Here, we employ molecular dynamics simulations to investigate these mechanisms in hydrated adsorbate conformations of montmorillonite, a smectite-type clay, with ten biomolecules of varying chemistry and structure, including sugars related to cellulose and hemicellulose, lignin-related phenolic acid, and amino acids with different functional groups. Our molecular modeling captures biomolecule-clay and biomolecule-biomolecule interactions that dictate selectivity and competition in adsorption retention and interlayer nanopore trapping, which we determine experimentally by NMR and X-ray diffraction, respectively. Specific adsorbate structures are important in facilitating the electrostatic attraction and Van der Waals energies underlying the hierarchy in biomolecule adsorption. Stabilized by a network of direct and water-bridged hydrogen bonds, favorable electrostatic interactions drive this hierarchy whereby amino acids with positively charged side chains are preferentially adsorbed on the negatively charged clay surface compared to the sugars and carboxylate-rich aromatics and amino acids. With divalent metal cations, our model adsorbate conformations illustrate hydrated metal cation bridging of carboxylate-containing biomolecules to the clay surface, thus explaining divalent cation-promoted adsorption from our experimental data. Adsorption experiments with a mixture of biomolecules reveal selective inhibition in biomolecule adsorption, which our molecular modeling attributes to electrostatic biomolecule-biomolecule pairing that is more energetically favorable than the biomolecule-clay complex. In sum, our findings highlight chemical and structural features that can inform hypotheses for predicting biomolecule adsorption at water-clay interfaces.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Arcilla , Adsorción , Agua/química , Electricidad Estática , Aminoácidos , Azúcares
2.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478109

RESUMEN

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Asunto(s)
Células Endoteliales , Traumatismos de la Médula Espinal , Animales , Ratones , Ratas , Angiogénesis , Barrera Hematoencefálica/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Factores de Transcripción SOXF/genética , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
J Neurosci ; 43(9): 1456-1474, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653190

RESUMEN

RNA N6-methyladenosine (m6A) modification is involved in diverse biological processes. However, its role in spinal cord injury (SCI) is poorly understood. The m6A level increases in injured spinal cord, and METTL3, which is the core subunit of methyltransferase complex, is upregulated in reactive astrocytes and further stabilized by the USP1/UAF1 complex after SCI. The USP1/UAF1 complex specifically binds to and subsequently removes K48-linked ubiquitination of the METTL3 protein to maintain its stability after SCI. Moreover, conditional knockout of astrocytic METTL3 in both sexes of mice significantly suppressed reactive astrogliosis after SCI, thus resulting in widespread infiltration of inflammatory cells, aggravated neuronal loss, hampered axonal regeneration, and impaired functional recovery. Mechanistically, the YAP1 transcript was identified as a potential target of METTL3 in astrocytes. METTL3 could selectively methylate the 3'-UTR region of the YAP1 transcript, which subsequently maintains its stability in an IGF2BP2-dependent manner. In vivo, YAP1 overexpression by adeno-associated virus injection remarkably contributed to reactive astrogliosis and partly reversed the detrimental effects of METTL3 knockout on functional recovery after SCI. Furthermore, we found that the methyltransferase activity of METTL3 plays an essential role in reactive astrogliosis and motor repair, whereas METTL3 mutant without methyltransferase function failed to promote functional recovery after SCI. Our study reveals the previously unreported role of METTL3-mediated m6A modification in SCI and might provide a potential therapy for SCI.SIGNIFICANCE STATEMENT Spinal cord injury is a devastating trauma of the CNS involving motor and sensory impairments. However, epigenetic modification in spinal cord injury is still unclear. Here, we propose an m6A regulation effect of astrocytic METTL3 following spinal cord injury, and we further characterize its underlying mechanism, which might provide promising strategies for spinal cord injury treatment.


Asunto(s)
Gliosis , Traumatismos de la Médula Espinal , Animales , Femenino , Masculino , Ratones , Astrocitos/metabolismo , Gliosis/metabolismo , Inflamación/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , ARN Mensajero/metabolismo , Médula Espinal/metabolismo
4.
J Transl Med ; 22(1): 252, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459493

RESUMEN

BACKGROUND: Albuminuria, the presence of excess of protein in urine, is a well-known risk factor for early kidney damage among diabetic/prediabetic patients. There is a complex interaction between physical activity (PA) and albuminuria. However, the relationship of specific-domain PA and albuminuria remained obscure. METHODS: Albuminuria was defined as urinary albumin/creatinine ratio (ACR) > 30 mg/g. PA was self-reported by participants and classified into transportation-related PA (TPA), occupation-related PA (OPA), and leisure-time PA (LTPA). Weighted logistic regression was conducted to compute the odds ratios (ORs) and 95% confidence intervals (CIs). Restricted cubic spline (RCS) was used to evaluate the dose-response of PA domains with the risk of albuminuria. RESULTS: A total of 6739 diabetic/prediabetic patients (mean age: 56.52 ± 0.29 years) were enrolled in our study, including 3181 (47.20%) females and 3558 (52.80%) males. Of them, 1578 (23.42%) were identified with albuminuria, and 5161(76.58%) were without albuminuria. Diabetic/prediabetic patients who adhered the PA guidelines for total PA had a 22% decreased risk of albuminuria (OR = 0.78, 95%CI 0.64-0.95), and those met the PA guidelines for LTPA had a 28% decreased of albuminuria (OR = 0.72, 95%CI 0.57-0.92). However, OPA and TPA were both not associated with decreased risk of albuminuria. RCS showed linear relationship between the risk of albuminuria with LTPA. CONCLUSIONS: Meeting the PA guideline for LTPA, but not OPA and TPA, was inversely related to the risk of albuminuria among diabetic/prediabetic patients. Additionally, achieving more than 300 min/week of LTPA conferred the positive effects in reducing albuminuria among diabetic/prediabetic patients.


Asunto(s)
Diabetes Mellitus , Estado Prediabético , Masculino , Femenino , Humanos , Persona de Mediana Edad , Estudios Transversales , Albuminuria/complicaciones , Ejercicio Físico/fisiología
5.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561648

RESUMEN

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Asunto(s)
Radiómica , Neoplasias Gástricas , Humanos , Estudios de Cohortes , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Estudios Retrospectivos , Inestabilidad de Microsatélites , Inmunoterapia , Tomografía Computarizada por Rayos X , Inmunoglobulinas
6.
Exp Eye Res ; 242: 109881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554800

RESUMEN

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Asunto(s)
Núcleo Celular , Ratones Endogámicos C57BL , Células Ganglionares de la Retina , Factor de Transcripción Brn-3A , Animales , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Ratones , Recuento de Células , Núcleo Celular/metabolismo , Factor de Transcripción Brn-3A/metabolismo , Coloración y Etiquetado/métodos , Biomarcadores/metabolismo
7.
Langmuir ; 40(21): 11251-11262, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748644

RESUMEN

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 µmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.

8.
Biomacromolecules ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924782

RESUMEN

Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.

9.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38603577

RESUMEN

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Asunto(s)
Cannabidiol , Carcinoma Epitelial de Ovario , Microbioma Gastrointestinal , Neoplasias Ováricas , Cannabidiol/farmacología , Cannabidiol/química , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Humanos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Animales , Ratones , Receptores ErbB/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Estructura Molecular
10.
J Nanobiotechnology ; 22(1): 116, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493156

RESUMEN

BACKGROUND: In the inflammatory milieu of diabetic chronic wounds, macrophages undergo substantial metabolic reprogramming and play a pivotal role in orchestrating immune responses. Itaconic acid, primarily synthesized by inflammatory macrophages as a byproduct in the tricarboxylic acid cycle, has recently gained increasing attention as an immunomodulator. This study aims to assess the immunomodulatory capacity of an itaconic acid derivative, 4-Octyl itaconate (OI), which was covalently conjugated to electrospun nanofibers and investigated through in vitro studies and a full-thickness wound model of diabetic mice. RESULTS: OI was feasibly conjugated onto chitosan (CS), which was then grafted to electrospun polycaprolactone/gelatin (PG) nanofibers to obtain P/G-CS-OI membranes. The P/G-CS-OI membrane exhibited good mechanical strength, compliance, and biocompatibility. In addition, the sustained OI release endowed the nanofiber membrane with great antioxidative and anti-inflammatory activities as revealed in in vitro and in vivo studies. Specifically, the P/G-CS-OI membrane activated nuclear factor-erythroid-2-related factor 2 (NRF2) by alkylating Kelch-like ECH-associated protein 1 (KEAP1). This antioxidative response modulates macrophage polarization, leading to mitigated inflammatory responses, enhanced angiogenesis, and recovered re-epithelization, finally contributing to improved healing of mouse diabetic wounds. CONCLUSIONS: The P/G-CS-OI nanofiber membrane shows good capacity in macrophage modulation and might be promising for diabetic chronic wound treatment.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Nanofibras , Succinatos , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Macrófagos/metabolismo , Antioxidantes/farmacología , Cicatrización de Heridas , Quitosano/metabolismo
11.
Appl Opt ; 63(9): 2234-2240, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568577

RESUMEN

Bessel beam arrays are highly attractive due to non-diffraction properties, parallel processing, and large capacity capabilities. However, conventional approaches of generating Bessel beams, such as spatial light modulators, axicons, and diffraction optical elements, suffer from various limitations of system complexity and bulkiness, low uniformity, and limited numerical aperture (NA). The limited NA imposes constraints on achieving minimal full width at half maximum (FWHM) of the Bessel beam, ultimately compromising the resolution of the beam. In this study, we demonstrate a method for generating Bessel beam arrays with regular and random patterns via an ultra-compact metasurface. This approach integrates the phase profile of an optimized beam splitter with a meta-axicon. The Bessel beam arrays exhibit subwavelength dimensions of FWHM (590 nm, ∼0.9λ) and relatively high uniformity of 90% for N A=0.2 and 69% for N A=0.4. Furthermore, the method achieves effective suppression of background noise and zeroth-order intensity compared to methods based on Dammann grating (DG) based metasurfaces. The proposed method highlights potential applications of Bessel beam arrays in various fields, such as laser machining, optical communication, and biomedical imaging.

12.
Drug Resist Updat ; 67: 100917, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36608472

RESUMEN

Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.


Asunto(s)
Calor , Neoplasias , Animales , Escherichia coli , Peróxido de Hidrógeno/farmacología , Biopelículas , Línea Celular Tumoral , Microambiente Tumoral
13.
Eur Spine J ; 33(1): 289-297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981599

RESUMEN

STUDY DESIGN: Retrospective cohort. OBJECTIVE: The purpose of this study is to assess the potential of utilizing the MRI-based vertebral bone quality (VBQ) score as a predictive tool for pedicle screw loosening (PSL) in patients who have undergone pedicle screw fixation and to identify risk factors associated with VBQ scores. METHODS: One hundred and sixteen patients who had undergone pedicle screw fixation between December 2019 and January 2021 and had more than a year of follow-up were divided into two groups of PSL and non-PSL. The radiological and clinical parameters investigated were age, gender, body mass index, the VBQ score, length of fusion and the DXA T-score. RESULTS: Of the 116 patients included in the study, 22 patients developed pedicle screw loosening after surgery (18.97%). VBQ score of PSL group was higher than the non-PSL group (3.61 ± 0.63 vs. 2. 86 ± 0.43, p < 0.001). According to logistic regression, PSL was independently linked with a higher VBQ score (OR = 3.555, 95% confidence interval [1.620-7.802], p < 0.005). The AUC of predicting screw loosening was 0.774 (p < 0.001) for VBQ score, and the best threshold was 3.055 (sensitivity, 81.8%; specificity, 71.3%). High VBQ score was associated with age (r (114) = 0.29, p = 0.002), while it was not negatively correlated with T-scores of each part. CONCLUSION: VBQ score is an independent predictor of pedicle screw loosening, with higher scores indicating a greater risk. Our results showed that older patients and women had higher VBQ scores.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Humanos , Femenino , Tornillos Pediculares/efectos adversos , Estudios Retrospectivos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Imagen por Resonancia Magnética , Radiografía , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos
14.
Zygote ; 32(1): 71-76, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124629

RESUMEN

During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Trofoblastos , Embarazo , Femenino , Humanos , Factores de Crecimiento de Fibroblastos/metabolismo , Blastocisto , Implantación del Embrión , Endometrio/metabolismo
15.
Int J Cancer ; 152(7): 1290-1303, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36082452

RESUMEN

CD25 is the alpha-chain of the heterotrimer IL-2 receptor. CD25 is expressed on the surface of both immune and non-immune cells with different frequencies. For cancers, CD25 is expressed at high levels in many types of hematological malignancies, but at low levels in most solid tumors. CD25 is also highly expressed in activated circulating immune cells and regulatory T cells (Tregs). Infiltration of Tregs in the tumor microenvironment can lead to an imbalanced ratio of effector T cells (Teffs) and Tregs, which is associated with the progression of cancers. A rescued Teff/Treg cell ratio indicates an efficient anti-tumor response to immunotherapy. CD25 as a potential target for the depletion of Tregs is critical in developing new immunotherapeutic strategies. Few articles have summarized the relationships between CD25 and tumors, or the recent progress of drugs targeting CD25. In this paper, we will discuss the structures of IL-2 and IL-2R, the biological function of CD25 and its important role in tumor therapy. In addition, the latest research on drugs targeting CD25 has been summarized, providing guidance for future drug development.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Subunidad alfa del Receptor de Interleucina-2 , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
16.
PLoS Pathog ; 17(8): e1009790, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343211

RESUMEN

The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas/metabolismo , Virus ARN/fisiología , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Virosis/prevención & control , Replicación Viral , Animales , Antivirales/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Helicasas/genética , Ribonucleasa III/genética , Virosis/genética
17.
Med Sci Monit ; 29: e941845, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470125

RESUMEN

It was brought to our attention by the authors that Figures 5A and 6A contained errors. The correct version of Figures 5A and 6A are provided below. The corrected figures do not change the overall findings of the study. Reference: Jiaxing Wang, Fakun Huang, Caiyun Jiang, Pan Chi. Silencing Signal Transducer and Activator of Transcription 3 (STAT3) and Use of Anti-Programmed Cell Death-Ligand 1 (PD-L1) Antibody Induces Immune Response and Anti-Tumor Activity. Med Sci Monit, 2020; 26: e915854. DOI: 10.12659/MSM.915854.

18.
Mediators Inflamm ; 2023: 8709458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181811

RESUMEN

Colon adenocarcinoma (COAD) is one of the tumors with the highest mortality rates. It is of the utmost significance to make an accurate prognostic assessment and to tailor one's treatment to the specific needs of the patient. Multiple lines of evidence point to the possibility that genetic variables and clinicopathological traits are connected to the onset and development of cancer. In the past, a number of studies have revealed that gamma-aminobutyric acid type A receptor subunit delta (GABRD) plays a role in the advancement of a number of different cancers. However, its function in COAD was rarely reported. In this study, we analyzed TCGA datasets and identified 29 survival-related differentially expressed genes (DEGs) in COAD patients. In particular, GABRD expression was noticeably elevated in COAD specimens. There was a correlation between high GABRD expression and an advanced clinical stage. According to the results of the survival tests, patients whose GABRD expression was high had a lower overall survival time and progression-free survival time than those whose GABRD expression was low. GABRD expression was found to be an independent predictive predictor for overall survival, as determined by multivariate COX regression analysis. Additionally, the predictive nomogram model can accurately predict the fate of individuals with COAD. In addition, we observed that GABRD expressions were positively associated with the expression of T cells regulatory (Tregs), macrophages M0, while negatively associated with the expression of T cells CD8, T cells follicular helper, macrophages M1, dendritic cells activated, eosinophils, and T cells CD4 memory activated. The IC50 of BI-2536, bleomycin, embelin, FR-180204, GW843682X, LY317615, NSC-207895, rTRAIL, and VX-11e was higher in the GABRD high-expression group. In conclusion, we have shown evidence that GABRD is a novel biomarker that is connected with immune cell infiltration in COAD and may be utilized to predict the prognosis of COAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Pronóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Nomogramas , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Receptores de GABA-A/genética
19.
BMC Musculoskelet Disord ; 24(1): 433, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254092

RESUMEN

BACKGROUND: The use of unicompartmental knee arthroplasty (UKA) in patients with preoperative synovitis is controversial. This study aimed to investigate the association between synovitis detected by magnetic resonance imaging (MRI) and prognosis after UKA. METHODS: Synovitis was graded using the MRI Osteoarthritis Knee Score criteria based on preoperative MRI findings of 132 UKAs performed between June 2020 and August 2021. The Knee Society Knee Score (KS-KS) and the Knee Society Function Score were collected preoperatively and 1 year postoperatively. The relationship between synovitis and the changes in the Knee Society score was analyzed using logistic regression. RESULTS: Univariate logistic regression showed that patients with higher preoperative synovitis scores (odds ratio (OR) = 1.925, 95% confidence interval (CI): 1.482-2.500, P < 0.001) had higher KS-KS changes. After adjusting for confounding variables, synovitis was proven to be an independent factor for KS-KS improvement after UKA in multivariate logistic regression (OR = 1.814, 95% CI: 1.354-2.430, P < 0.001). Before UKA, patients with synovitis had lower pain scores (PS) than patients without synovitis (95% CI: -17.159 - -11.160, t = -9.347, P < 0.001). There was no difference in PS between the two groups after UKA (95% CI: -6.559 - 0.345, t = -1.782, P = 0.077). CONCLUSIONS: Patients with synovitis can achieve good improvement of pain symptoms, and the efficacy is not inferior to that of non-synovitis patients after UKA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética , Dolor/cirugía
20.
Phytother Res ; 37(10): 4722-4739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37443453

RESUMEN

Epithelial ovarian cancer (EOC) is the most common and fatal subtype of ovarian malignancies, with no effective therapeutics available. Our previous studies have demonstrated extraordinary suppressive efficacy of enterolactone (ENL) on EOC. A chemotherapeutic agent, trabectedin (Trabe), is shown to be effective on ovarian cancer, especially when combined with other therapeutics, such as pegylated liposomal doxorubicin or oxaliplatin. Thrombospondin 1 (THBS1), a kind of matrix glycoprotein, plays important roles against cancer development through inhibiting angiogenesis but whether it is involved in the suppression of EOC by ENL or Trabe remains unknown. To test combined suppressive effects of ENL and Trabe on EOC and possible involvement of THBS1 in the anticancer activities of ENL and Trabe. The EOC cell line ES-2 was transfected with overexpressed THBS1 by lentivirus vector. We employed tube formation assay to evaluate the anti-angiogenesis activity of ENL and of its combined use with Trabe after THBS1 overexpression and established drug intervention and xenograft nude mouse cancer models to assess the in vivo effects of the hypothesized synergistic suppression between the agents and the involvement of THBS1. Mouse fecal samples were collected for 16S rDNA sequencing and microbiota analysis. We detected strong inhibitory activities of ENL and Trabe against the proliferation and migration of cancer cells and observed synergistic effects between ENL and Trabe in suppressing EOC. ENL and Trabe, given either separately or in combination, could suppress the tube formation capability of human microvascular endothelial cells, and this inhibitory effect became even stronger with THBS1 overexpression. In the ENL plus Trabe combination group, the expression of tissue inhibitor of metalloproteinases 3 and cluster of differentiation 36 was both upregulated, whereas matrix metalloproteinase 9, vascular endothelial growth factor, and cluster of differentiation 47 were all decreased. With the overexpression of THBS1, the results became even more pronounced. In animal experiments, combined use of ENL and Trabe showed superior inhibitory effects to either single agent and significantly suppressed tumor growth, and the overexpression of THBS1 further enhanced the anti-cancer activities of the drug combination group. ENL and Trabe synergistically suppress EOC and THBS1 could remarkably facilitate the synergistic anticancer effects of ENL and Trabe.


Asunto(s)
Neoplasias Ováricas , Trombospondina 1 , Animales , Ratones , Humanos , Femenino , Carcinoma Epitelial de Ovario , Trabectedina/uso terapéutico , Trombospondina 1/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Células Endoteliales/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Línea Celular Tumoral , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA