Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182781

RESUMEN

Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor ß subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Células Cultivadas , Subunidad beta Común de los Receptores de Citocinas/genética , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Hematopoyesis/genética , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Homeostasis , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tirosina Quinasa 3 Similar a fms/deficiencia , Tirosina Quinasa 3 Similar a fms/genética
2.
J Biol Chem ; 288(13): 9084-91, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23393137

RESUMEN

Methylation at the 5-position of DNA cytosine on the vertebrate genomes is accomplished by the combined catalytic actions of three DNA methyltransferases (DNMTs), the de novo enzymes DNMT3A and DNMT3B and the maintenance enzyme DNMT1. Although several metabolic routes have been suggested for demethylation of the vertebrate DNA, whether active DNA demethylase(s) exist has remained elusive. Surprisingly, we have found that the mammalian DNMTs, and likely the vertebrates DNMTs in general, can also act as Ca(2+) ion- and redox state-dependent active DNA demethylases. This finding suggests new directions for reinvestigation of the structures and functions of these DNMTs, in particular their roles in Ca(2+) ion-dependent biological processes, including the genome-wide/local DNA demethylation during early embryogenesis, cell differentiation, neuronal activity-regulated gene expression, and carcinogenesis.


Asunto(s)
5-Metilcitosina/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Animales , Calcio/metabolismo , Núcleo Celular/metabolismo , Cromatografía en Capa Delgada/métodos , Citosina/química , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Genómica , Células HEK293 , Humanos , Iones , Masculino , Ratones , Oxidación-Reducción , Transducción de Señal , Espermatozoides/metabolismo , Porcinos , ADN Metiltransferasa 3B
3.
Elife ; 122024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752723

RESUMEN

A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.


Asunto(s)
Factores de Transcripción de Tipo Kruppel , Longevidad , Animales , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Longevidad/genética , Células Asesinas Naturales/inmunología , Neoplasias/genética , Ingeniería Genética , Trasplante de Médula Ósea , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Transgénicos
4.
J Biol Chem ; 287(40): 33116-21, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22898819

RESUMEN

For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases. Significantly, intactness of the C methylation catalytic sites of these de novo enzymes is also required for their 5-hmC dehydroxymethylation activity. That DNMT3A and DNMT3B function bidirectionally both as DNA methyltransferases and as dehydroxymethylases raises intriguing and new questions regarding the structural and functional aspects of these enzymes and their regulatory roles in the dynamic modifications of the vertebrate genomes during development, carcinogenesis, and gene regulation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Metilasas de Modificación del ADN/fisiología , Animales , Núcleo Celular/metabolismo , Cromatografía en Capa Delgada/métodos , ADN/química , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN/química , Dioxigenasas/genética , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Oxidación-Reducción , Plásmidos/metabolismo , ADN Metiltransferasa 3B
5.
Sci Rep ; 6: 37490, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886214

RESUMEN

DNA methylation at C of CpG dyads (mCpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic mCpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-mCpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites. Thus, efficiency of MMR surveillance over the mammalian genome in vivo is enhanced at the epigenetic level. This synergy endows vertebrate CpG methylation with a new biological significance and, consequently, an additional mechanism for the maintenance of vertebrate genome stability.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Reparación de la Incompatibilidad de ADN , ADN/genética , Epigénesis Genética , Genoma , Proteínas Nucleares/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Islas de CpG , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Transfección , Ubiquitina-Proteína Ligasas
6.
Oncogene ; 23(47): 7898-902, 2004 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-15378011

RESUMEN

We have examined the relationship between DNA mismatch repair and deficiency of DNA methylation in a mouse embryonic cell line, Dnmt1-/- ES, with homologous deletion of the gene coding for the maintenance DNA methyltransferase Dnmt1. With the use of a sensitive PCR for the assay of two mononucleotide- and three dinucleotide microsatellite markers that exhibited instabilities in mismatch repair-deficient cells, significantly higher frequencies of instability were detected at three of the five markers in Dnmt1-/- ES than the wild-type ES. The data suggest that Dnmt1 enzyme plays an integrating role in DNA replication and/or repair. The implication that Dnmt1 enzyme and/or cytosine methylation may participate in the strand discrimination of mismatch repair during eukaryotic DNA replication is discussed.


Asunto(s)
Disparidad de Par Base/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Reparación del ADN/genética , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Replicación del ADN/genética , Ratones , Ratones Noqueados , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre
7.
Epigenomics ; 6(3): 353-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25111488

RESUMEN

Vertebrate DNA methyltransferases (DNMTs) have been thought to primarily function to covalently add a methyl group to the 5-position of cytosine. However, recent discovery of the DNA demethylation and dehydroxymethylation activities of DNMTs in vitro suggest new routes to complete the dynamic cycle of DNA methylation-demethylation of the vertebrate genomes. The in vitro reaction conditions suggest that vertebrate DNMTs can switch from DNA methylases to DNA dehydroxymethylases under oxidative stress and to DNA demethylases in the presence of calcium ion under nonreducing conditions. These environmental parameters provide clues regarding the choices in vivo of DNMT activities utilized in different physiological systems. In particular, the nature of these parameters suggest that the DNA demethylation and dehydroxymethylation activities of the vertebrate DNMTs play essential roles in multiple biological processes including early embryo development, regulation of neuronal plasticity, tumorigenesis and hormone-regulated transcription.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Vertebrados/genética , Animales , Calcio/metabolismo , Genoma , Humanos , Plasticidad Neuronal , Estrés Oxidativo , Vertebrados/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA