Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Biol Reprod ; 110(4): 808-818, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38169437

RESUMEN

The Yangtze finless porpoises (Neophocaena asiaeorientalis a.) are an endemic and critically endangered species in China. Intensive captive breeding is essential for understanding the biology of critically endangered species, especially their pregnancy characteristics, knowledge of which is crucial for effective breeding management. Urine metabolomics can reveal metabolic differences, arising from physiological changes across pregnancy stages. Therefore, we used the urinary metabolomic technology, to explore urinary metabolite changes in pregnant Yangtze finless porpoises. A total of 2281 metabolites were identified in all samples, which including organic acids and derivatives (24.45%), organoheterocyclic compounds (20.23%), benzenoids (18.05%), organic oxygen compounds (7.73%), and phenylpropanoids and polyketides (6.48%). There were 164, 387, and 522 metabolites demonstrating differential abundance during early pregnancy, mid pregnancy, and late pregnancy, respectively, from the levels observed in nonpregnancy. The levels of pregnenolone, 17α-hydroxyprogesterone, and tetrahydrocortisone were significantly higher during all pregnancy stages, indicating their important roles in fetal development. The differential metabolites between nonpregnancy and pregnancy were mainly associated with amino acid and carbohydrate metabolism. Moreover, metabolic activity varied across pregnancy stages; steroid hormone biosynthesis was predominant in early pregnancy, and amino acid biosynthesis and carbohydrate metabolism were predominant in mid pregnancy and late pregnancy, respectively. Our results provide new insights into metabolic characteristics in the Yangtze finless porpoises' urine during pregnancy, and indicate that the differential levels of urine metabolites can determine pregnancy in Yangtze finless porpoises, providing valuable information for the husbandry and management of pregnant Yangtze finless porpoises in captivity.


Asunto(s)
Marsopas , Animales , Femenino , Embarazo , Marsopas/fisiología , Especies en Peligro de Extinción , Metabolómica , China , Aminoácidos
2.
Proc Biol Sci ; 290(1990): 20221786, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629097

RESUMEN

Sand mining, which has tripled in the last two decades, is an emerging concern for global biodiversity. However, the paucity of sand mining data worldwide prevents understanding the extent of sand mining impacts and how it affects wildlife populations and ecosystems, which is critical for timely mitigation and conservation actions. Integrating remote sensing and field surveys over 14 years, we investigated mining impacts on the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in Dongting Lake, China. We found that sand mining presented a consistent, widespread disturbance in Dongting Lake. Porpoises strongly avoided mining sites, especially those of higher mining intensity. The extensive sand mining significantly contracted the porpoise's range and restricted their habitat use in the lake. Water traffic for sand transportation further blocked the species's river-lake movements, affecting the population connectivity. In addition, mining-induced loss of near-shore habitats, a critical foraging and nursery ground for the porpoise, occurred in nearly 70% of the water channels of our study region. Our findings provide the first empirical evidence of the impacts of unregulated sand extractions on species distribution. Our spatio-temporally explicit approach and findings support regulation and conservation, yielding broader implications for sustainable sand mining worldwide.


Asunto(s)
Marsopas , Arena , Animales , Ecosistema , Cetáceos , Marsopas/fisiología , Lagos , China , Minería
3.
Ecotoxicol Environ Saf ; 228: 113047, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34861441

RESUMEN

Highly concentrated live mass stranding events of dolphins and whales happened in the eastern coast of China between June and October 2021. The current study adopted the non-invasive auditory evoked-potential technique to investigate the hearing threshold of a stranded melon headed whale (Peponocephala electra) at a frequency range of between 9.5 and 181 kHz. It was found that, at the frequency range of from 10 to 100 kHz, hearing thresholds for the animal were between 20 and 65 dB higher than those of its phylogenetically closest species (Pygmy killer whale). The severe hearing loss in the melon headed whale was probably caused by transient intense anthropogenic sonar or chronic shipping noise exposures. The hearing loss could have been the cause for the observed temporal and spatial clustered stranding events. Therefore, there is need for noise mitigation strategies to reduce noise exposure levels for marine mammals in the coastal areas of China.

4.
Ecotoxicol Environ Saf ; 226: 112860, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624534

RESUMEN

The Yangtze River exhibits a high biodiversity and plays an important role in global biodiversity conservation. As the world's busiest inland river in regard to shipping, little attention has been paid to underwater noise pollution. In 2017, the underwater noise level in 25 riverside locations along the middle and lower reaches of the Yangtze River mainly at night time were investigated by using passive acoustic monitoring method. Approximately 88% and 40% of the sampled sites exhibit noise levels exceeding the underwater acoustic thresholds of causing responsiveness and temporary threshold shift, respectively, in cetacean. Noise pollution may impose a high impact on fish with physostomous swim bladders and Weberian ossicles, such as silver carp, bighead carp, goldfish and common carp, whereas it may affect fish with physoclistous swim bladders and without Weberian ossicles, such as lake sturgeon and paddlefish, to a lesser extent. Noise levels reductions of approximately 10 and 20 dB were observed in the middle and lower reaches, respectively, of the Yangtze River over the 2012 level. The green development mode of the ongoing construction of green shipping in the Yangtze River Economic Belt, including the development of green shipping lanes, ports, ships and transportation organizations, may account for the alleviated underwater noise pollution. Follow-up noise mitigation endeavors, such as the extension of ship speed restrictions and the study and implementation of the optimal navigation speed in ecologically important areas, are required to further reduce the noise level in the Yangtze River to protect local porpoises and fish.


Asunto(s)
Carpas , Marsopas , Animales , Biodiversidad , China , Ruido/efectos adversos , Ríos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32448998

RESUMEN

Hearing is considered the primary sensory modality of cetaceans and enables their vital life functions. Information on the hearing sensitivity variability within a species obtained in a biologically relevant wild context is fundamental to evaluating potential noise impact and population-relevant management. Here, non-invasive auditory evoked-potential methods were adopted to describe the audiograms (11.2-152 kHz) of a group of four wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) during a capture-and-release health assessment project in Poyang Lake, China. All audiograms presented a U shape, generally similar to those of other delphinids and phocoenids. The lowest auditory threshold (51-55 dB re 1 µPa) was identified at a test frequency of 76 kHz, which was higher than that observed in aquarium porpoises (54 kHz). The good hearing range (within 20 dB of the best hearing sensitivity) was from approximately 20 to 145 kHz, and the low- and high-frequency hearing cut-offs (threshold > 120 dB re l µPa) were 5.6 and 170 kHz, respectively. Compared with aquarium porpoises, wild porpoises have significantly better hearing sensitivity at 32 and 76 kHz and worse sensitivity at 54, 108 and 140 kHz. The audiograms of this group can provide a basis for better understanding the potential impact of anthropogenic noise.


Asunto(s)
Audición/fisiología , Ruido/efectos adversos , Marsopas/fisiología , Animales , Umbral Auditivo , Potenciales Evocados Auditivos
6.
J Acoust Soc Am ; 142(2): 771, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28863578

RESUMEN

While the transmission beam of odontocetes has been described in a number of studies, the majority of them that have measured the transmission beam in two dimensions were focused on captive animals. Within the current study, a dedicated cross hydrophone array with nine elements was used to investigate the echolocation transmission beam of free-ranging Indo-Pacific humpback dolphins. A total of 265 on-axis clicks were analyzed, from which the apparent peak to peak source levels ranged between 168 to 207 dB (mean 184.5 dB ± 6.6 dB). The 3-dB beam width along the horizontal and vertical plane was 9.6° and 7.4°, respectively. Measured separately, the directivity index of the horizontal and vertical plane was 12.6 and 13.5 dB, respectively, and the overall directivity index (both planes combined) was 29.5 dB. The beam shape was slightly asymmetrical along the horizontal and vertical axis. Compared to other species, the characteristics of the transmitting beam of Indo-Pacific humpback dolphins were relatively close to the bottlenose dolphin (Tursiops truncatus), likely due to the similarity in the peak frequency and waveform of echolocation clicks and comparable body sizes of the two species.


Asunto(s)
Ecolocación , Yubarta/psicología , Vocalización Animal , Acústica/instrumentación , Animales , Tamaño Corporal , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Diseño de Equipo , Yubarta/clasificación , Especificidad de la Especie , Transductores , Vocalización Animal/clasificación
7.
Adv Exp Med Biol ; 875: 623-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611012

RESUMEN

The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis).


Asunto(s)
Envejecimiento/fisiología , Delfines/fisiología , Presbiacusia/fisiopatología , Animales , China , Geografía , Masculino , Espectrografía del Sonido
8.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27529217

RESUMEN

Social behaviors are poorly known for the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis). Here, group composition and dispersal patterns of the YFP population living in the Poyang Lake were studied by parentage-based pedigree analyses using 21 microsatellite loci and a 597 bp segment of the mitochondrial DNA control region. In this study, 21 potential mother-offspring pairs and six potential father-offspring pairs (including two potential parents-offspring pairs) were determined, among which 12 natural mother-offspring groups and a maternal group of three generations were found. No genetically-determined fathers were found associated with their offspring. This study also found that maternally related porpoises at the reproductive state tend to group together. This suggest maternal relationship and reproductive state may be factors for grouping in the YFP population. In natural mother-offspring groups, male offspring were all younger than two years old, which suggest male offspring may leave their mothers at approximately two years of age, or at least they were not in tight association with their mothers as they may have been under two years old. However, female offspring can stay longer with their mothers and can reproduce in the natal group.


Asunto(s)
Marsopas/crecimiento & desarrollo , Marsopas/fisiología , Animales , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Femenino , Lagos , Masculino , Repeticiones de Microsatélite/genética , Filogenia , Marsopas/clasificación , Marsopas/genética
9.
Virus Genes ; 51(2): 217-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26292945

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the development of therapeutic and diagnostic reagents and vaccines. To identify antigen epitopes with specificity for PEDV, a monoclonal antibody (MAb-5E12) against the immunodominant region of the PEDV Spike protein (S1) was used as the target for biopanning a 12-mer phage display, random peptide library. After multiple rounds of biopanning and stringent washing, three phage-displayed peptides, designated L, W and H, were identified that recognize MAb-5E12. Sequence analysis showed that the one or more of the peptides exhibited partial sequence similarity to the native S1 sequence 'MQYVYTPTYYML' (designated peptide M) at position 201-212. In combination with software analysis for the prediction of B cell epitopes, aa 201-212 exhibited characteristics of a linear epitope on the PEDV S1 protein. In contrast to peptide M, a consensus motif 'PxxY' was identified on both peptides L and W, and on the S1 protein, but not on peptide H. Peptide M and the MAb-5E12-recognizing peptides L and W significantly inhibited the adsorption of PEDV on the cell surface as monitored through plaque-reduction assays. Furthermore, data from real-time PCR and indirect immunofluorescence assays were consistent with the ability of peptides M, L and W to block viral protein expression and thereby function as antiviral agents for PEDV.


Asunto(s)
Epítopos/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente Indirecta , Pruebas de Neutralización , Biblioteca de Péptidos , Virus de la Diarrea Epidémica Porcina/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero , Ensayo de Placa Viral , Acoplamiento Viral/efectos de los fármacos
10.
J Acoust Soc Am ; 138(3): 1346-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26428773

RESUMEN

While the low-frequency communication sounds of Indo-Pacific humpback dolphins (Sousa chinensis) have been reported in a number of papers, the high-frequency echolocation signals of Sousa chinensis, especially those living in the wild, have been less studied. In the current study, echolocation signals of humpback dolphins were recorded in Sanniang Bay, Guangxi Province, China, using a cross-type hydrophone array with five elements. In total, 77 candidate on-axis clicks from 77 scans were selected for analysis. The results showed that the varied peak-to-peak source levels ranged from 177.1 to 207.3 dB, with an average of 187.7 dB re: 1 µPa. The mean peak frequency was 109.0 kHz with a -3-dB bandwidth of 50.3 kHz and 95% energy duration of 22 µs. The -3-dB bandwidth was much broader than the root mean square bandwidth and exhibited a bimodal distribution. The center frequency exhibited a positive relationship with the peak-to-peak source level. The clicks of the wild Indo-Pacific humpback dolphins were short-duration, broadband, ultrasonic pulses, similar to those produced by other whistling dolphins of similar body size. However, the click source levels of the Indo-Pacific humpback dolphin appear to be lower than those of other whistling dolphins.


Asunto(s)
Delfines/fisiología , Ecolocación/fisiología , Vocalización Animal/fisiología , Animales , Bahías , Conducta Animal/fisiología , China , Conducta Exploratoria/fisiología , Psicoacústica , Espectrografía del Sonido
11.
J Exp Biol ; 217(Pt 3): 444-52, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24143026

RESUMEN

How an animal receives sound may influence its use of sound. While 'jaw hearing' is well supported for odontocetes, work examining how sound is received across the head has been limited to a few representative species. The substantial variation in jaw and head morphology among odontocetes suggests variation in sound reception. Here, we address how a divergent subspecies, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) hears low-, mid- and high-frequency tones, as well as broadband clicks, comparing sounds presented at different locations across the head. Hearing was measured using auditory evoked potentials (AEPs). Click and tone stimuli (8, 54 and 120 kHz) were presented at nine locations on the head and body using a suction-cup transducer. Threshold differences were compared between frequencies and locations, and referenced to the underlying anatomy using computed tomography (CT) imaging of deceased animals of the same subspecies. The best hearing locations with minimum thresholds were found adjacent to a mandibular fat pad and overlaying the auditory bulla. Mean thresholds were not substantially different at locations from the rostrum tip to the ear (11.6 dB). This contrasts with tests with bottlenose dolphins and beluga whales, in which 30-40 dB threshold differences were found across the animals' heads. Response latencies increased with decreasing response amplitudes, which suggests that latency and sensitivity are interrelated when considering sound reception across the odontocete head. The results suggest that there are differences among odontocetes in the anatomy related to receiving sound, and porpoises may have relatively less acoustic 'shadowing'.


Asunto(s)
Marsopas/fisiología , Comunicación Animal , Animales , Potenciales Evocados Auditivos , Audición , Sonido
12.
Ecotoxicol Environ Saf ; 106: 19-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24836873

RESUMEN

Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake.


Asunto(s)
Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , China , Lagos/química , Medición de Riesgo
13.
J Acoust Soc Am ; 135(6): 3364-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24907799

RESUMEN

Passive acoustic monitoring for cetaceans mainly employ fixed-location methods or point transect samplings; an acoustic survey from a moving platform to conduct line transects is less common. In this study, acoustic capture-recapture by combining a double-observer method with line transect sampling was performed to observe Yangtze finless porpoises. Two acoustic devices were towed with the distance between them varying 0.5 to 89.5 m. The conditional probabilities that both devices would detect the porpoises within the same time window were calculated. In a 1-s time window, it became smaller as the distance between the devices increased, approaching zero when the distance between them was more than 50 m. It was considered that the devices with less than 50 m distance detected the same signals from the same animals, which means the identical detection. When the distance between them is too great, the recapture rate is reduced and the incidence of false matching may increase. Thus, a separation distance of around 50 m between two devices in acoustic capture-recapture of Yangtze finless porpoises was recommended. Note that the performance of the double detections can change depending on the particular device used and on animal behaviors such as vocalizing interval, ship avoidance.


Asunto(s)
Acústica , Ecolocación , Monitoreo del Ambiente , Marsopas/fisiología , Vocalización Animal , Acústica/instrumentación , Animales , Monitoreo del Ambiente/instrumentación , Diseño de Equipo , Humanos , Movimiento (Física) , Densidad de Población , Marsopas/clasificación , Presión , Procesamiento de Señales Asistido por Computador , Sonido , Espectrografía del Sonido , Factores de Tiempo , Transductores de Presión , Percepción Visual , Vocalización Animal/clasificación , Agua
14.
Ecol Evol ; 14(5): e11346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716168

RESUMEN

Numerous dams disrupt freshwater animals. The uppermost population of the critically endangered Yangtze finless porpoise has been newly formed below the Gezhouba Dam, however, information regarding the local porpoise is scarce. Passive acoustic monitoring was used to detect the behaviors of porpoises below the Gezhouba Dam. The influence of shipping, pandemic lockdown, hydrological regime, and light intensity on the biosonar activity of dolphins was also examined using Generalized linear models. Over the course of 4 years (2019-2022), approximately 848, 596, and 676 effective monitoring days were investigated at the three sites, from upstream to downstream. Observations revealed significant spatio-temporal biosonar activity. Proportion of days that are porpoise positive were 73%, 54%, and 61%, while porpoise buzz signals accounted for 78.49%, 62.35%, and 81.30% of all porpoise biosonar at the three stations. The biosonar activity of porpoises was much higher at the confluence area, particularly at the MZ site, during the absence of boat traffic, and during the Pandemic shutdown. Temporal trends of monthly, seasonal, and yearly variation were also visible, with the highest number of porpoises biosonar detected in the summer season and in 2020. Significant correlations also exist between the hydrological regime and light intensity and porpoise activity, with much higher detections during nighttime and full moon periods. Hydropower cascade development, establishment of a natural reserve, fish release initiatives, and implementation of fishing restrictions may facilitate the proliferation of the porpoise population downstream of the Gezhouba Dam within the Yichang section of the Yangtze River. Prioritizing restoration designs that match natural flow regimes, optimize boat traffic, and reduce noise pollution is crucial for promoting the conservation of the local porpoises.

15.
Ecol Evol ; 14(4): e11247, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584767

RESUMEN

Wuhan, a highly urbanized and rapidly growing region within China's Yangtze Economic Zone, has historically been identified as a gap area for the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) based on daytime visual surveys. However, there has been a noticeable increase in porpoise sightings since 2020. This study employed passive acoustic monitoring to investigate porpoise distribution in Wuhan between 2020 and 2022. Generalized linear models were used to explore the relationship between shipping, hydrological patterns, light intensity, and porpoise biosonar activity. Over 603 days of effective monitoring, the daily positive rate for porpoise biosonar detection reached 43%, with feeding-related buzz signals accounting for 55% of all porpoise biosonar signals. However, the proportion of minutes during which porpoise presence was detected was 0.18%, suggesting that while porpoises may frequent the area, their visits were brief and mainly focused on feeding. A significant temporal trend emerged, showing higher porpoise biosonar detection during winter (especially in February) and 2022. Additionally, periods without boat traffic correlated with increased porpoise activity. Hydrological conditions and light levels exhibited significant negative correlations with porpoise activity. Specifically, porpoise sonar detections were notably higher during the night, twilight, and new moon phases. It is highly conceivable that both fishing bans and COVID-19 pandemic-related lockdowns contributed to the heightened presence of porpoises in Wuhan. The rapid development of municipal transportation and shipping in Wuhan and resulting underwater noise pollution have emerged as a significant threat to the local porpoise population. Accordingly, it is imperative for regulatory bodies to effectively address this environmental stressor and formulate targeted protection measures to ensure the conservation of the finless porpoise.

16.
J Exp Biol ; 216(Pt 22): 4144-53, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24172886

RESUMEN

The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30-40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis).


Asunto(s)
Delfines , Ecolocación/fisiología , Presbiacusia/patología , Presbiacusia/veterinaria , Animales , China , Potenciales Evocados Auditivos/fisiología , Pruebas Auditivas/veterinaria , Masculino , Espectrografía del Sonido
17.
J Acoust Soc Am ; 133(4): 2479-89, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23556612

RESUMEN

Broadband recording systems were adapted to characterize the whistle characteristics of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China. A total of 4630 whistles were recorded, of which 2651 with legible contours and relatively good signal-to-noise ratios were selected for statistical analysis. Of the six tonal types (i.e., flat, down, rise, convex, U-shaped, and sine), flat (N = 1426; 39.45%) was the most predominant, followed by down (N = 754; 23.35%) and rise (N = 489; 12.34%). The whistles showed a short duration (mean ± SD: 370.19 ± 285.61 ms; range: 29-2923 ms), a broad frequency range (fundamental contour ranged from 0.52 to 33 kHz), and two harmonics (mean ± SD: 1.90 ± 2.74, with the maximum frequency of harmonics beyond 96 kHz). Whistles without gaps and stairs accounted for 76.7% and 86.4%, respectively. No significant interspecies differences in frequency parameters were observed compared with S. teuszii, which is inconsistent with morphological taxonomies but confirms phylogenetic results, thus suggesting a close relation between Chinese S. chinensis and Atlantic S. teuszii. Significant intra- and interspecific differences in the genus Sousa were also observed, indicating that animal vocalization may not be limited by genetically determined traits but could also be a function of local habitat adaptation.


Asunto(s)
Delfines/fisiología , Canto , Natación , Vocalización Animal , Acústica , Animales , China , Delfines/clasificación , Océanos y Mares , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Espectrografía del Sonido , Especificidad de la Especie , Factores de Tiempo
18.
J Acoust Soc Am ; 133(5): 3128-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23654415

RESUMEN

The biosonar (click train) production rate of ten Yangtze finless porpoises and their behavior were examined using animal-borne data loggers. The sound production rate varied from 0 to 290 click trains per 10-min time interval. Large individual differences were observed, regardless of body size. Taken together, however, sound production did not differ significantly between daytime and nighttime. Over the 172.5 h of analyzed recordings, an average of 99.0% of the click trains were produced within intervals of less than 60 s, indicating that during a 1-min interval, the number of click trains produced by each porpoise was typically greater than one. Most of the porpoises exhibited differences in average swimming speed and depth between day and night. Swimming speed reductions and usage of short-range sonar, which relates to prey-capture attempts, were observed more often during nighttime. However, biosonar appears to be affected not only by porpoise foraging, but also by their sensory environment, i.e., the turbid Yangtze River system. These features will be useful for passive acoustic detection of the porpoises. Calculations of porpoise density or abundance should be conducted carefully because large individual differences in the sound production rate will lead to large estimation error.


Asunto(s)
Acústica , Ecolocación , Monitoreo del Ambiente/métodos , Marsopas/fisiología , Vocalización Animal , Animales , Ritmo Circadiano , Conducta Alimentaria , Agua Dulce , Conducta Predatoria , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido , Natación , Factores de Tiempo
19.
J Hazard Mater ; 442: 130002, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152546

RESUMEN

Psychoactive substances have been identified as a kind of emerging contaminants in aquatic environment and pose potential adverse effects on aquatic animals. Yangtze finless porpoise, a critically endangered species in China, is also facing the threat of psychoactive substances. In this study, the accumulation characteristics and risk prioritization of psychoactive substances were investigated in Yangtze finless porpoise collected from Poyang Lake (PYL) and Tian-E-Zhou Oxbow (TZO) in Yangtze River basin. The levels of psychoactive substances were detected in the range of below method detection limits (MDLs) to 98.4 ng/mL in the serum of Yangtze finless porpoise. Codeine (COD) and methamphetamine were identified as the major substances due to the highest residual levels with a median concentration of 0.72 ng/mL and 0.33 ng/mL, respectively. The total concentrations of psychoactive substances in the porpoise collected from TZO was significantly higher than those from PYL. Risk analysis based on effect ratio derived from the ratio of steady-state psychoactive substance serum concentration in the porpoise and human therapeutic plasma concentration revealed that COD was the substance with the highest risk among the psychoactive substances detected, followed by lysergic acid diethylamide (LSD), morphine, alprazolam (ALPZ) and lormetazepam. Location-specific risk prioritization of psychoactive substances found that the top 3 substances are LSD, lorazepam (LORZ) and ALPZ in PYL, and COD, LSD and LORZ in TZO. The results disclose the accumulation of psychoactive substances in Yangtze finless porpoise and suggest that the potential adverse effects should be concerned.


Asunto(s)
Metanfetamina , Marsopas , Animales , Humanos , Dietilamida del Ácido Lisérgico , Alprazolam , Lorazepam , Codeína , Derivados de la Morfina , China
20.
Biomimetics (Basel) ; 8(4)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37622972

RESUMEN

Sound reception was investigated in the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) at its most sensitive frequency. The computed tomography scanning, sound speed, and density results were used to develop a three-dimensional numerical model of the porpoise sound-reception system. The acoustic fields showed that sounds can reach the ear complexes from various pathways, with distinct receptivity peaks on the forward, left, and right sides. Reception peaks were identified on the ipsilateral sides of the respective ears and found on the opposite side of the ear complexes. These opposite maxima corresponded to subsidiary hearing pathways in the whole head, especially the lower head, suggesting the complexity of the sound-reception mechanism in the porpoise. The main and subsidiary sound-reception pathways likely render the whole head a spatial receptor. The low-speed and -density mandibular fats, compared to other acoustic structures, are significant energy enhancers for strengthening forward sound reception. Based on the porpoise reception model, a biomimetic receptor was developed to achieve directional reception, and in parallel to the mandibular fats, the silicon material of low speed and density can significantly improve forward reception. This bioinspired and biomimetic model can bridge the gap between animal sonar and artificial sound control systems, which presents potential to be exploited in manmade sonar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA