Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 621(7979): 602-609, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704733

RESUMEN

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Asunto(s)
Neoplasias de la Mama , Linaje de la Célula , Metástasis de la Neoplasia , Columna Vertebral , Células Madre , Humanos , Neoplasias de la Mama/patología , Diferenciación Celular , Autorrenovación de las Células , Metástasis de la Neoplasia/patología , Osteoblastos/citología , Osteoblastos/patología , Columna Vertebral/citología , Columna Vertebral/patología , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología , Biomarcadores
2.
Nat Methods ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232199

RESUMEN

Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR's applicability for challenging mouse and human neurons toward scaled and faithful data production.

3.
Plant Cell ; 36(5): 1963-1984, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271284

RESUMEN

Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day (SD) conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses SD-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Fotoperiodo , Latencia en las Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Populus/fisiología , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Latencia en las Plantas/genética , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo
4.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684007

RESUMEN

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Asunto(s)
Anfibios , Biodiversidad , Filogenia , Animales , Anfibios/clasificación , China , Conservación de los Recursos Naturales
5.
Plant Cell ; 35(1): 552-573, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36255259

RESUMEN

When exposed to pathogen infection or ultraviolet (UV) radiation, grapevine (Vitis vinifera) plants rapidly accumulate the stilbenoid resveratrol (Res) with concomitant increase of stilbene synthase (STS), the key enzyme in stilbene biosynthesis. Although a few transcription factors have been shown to regulate STSs, the molecular mechanism governing the regulation of STSs is not well elucidated. Our previous work showed that a VvMYB14-VvWRKY8 regulatory loop fine-tunes stilbene biosynthesis in grapevine through protein-protein interaction; overexpression of VvWRKY8 down-regulates VvMYB14 and VvSTS15/21; and application of exogenous Res up-regulates WRKY8 expression. Here, we identified an R2R3-MYB repressor, VvMYB30, which competes with the activator VvMYB14 for binding to the common binding sites in the VvSTS15/21 promoter. Similar to VvMYB14, VvMYB30 physically interacts with VvWRKY8 through their N-termini, forming a complex that does not bind DNA. Exposure to UV-B/C stress induces VvMYB14, VvWRKY8, and VvSTS15/21, but represses VvMYB30 in grapevine leaves. In addition, MYB30 expression is up-regulated by VvWRKY8-overexpression or exogenous Res. These findings suggest that the VvMYB14-VvWRKY8-VvMYB30 regulatory circuit allows grapevine to respond to UV stress by producing Res and prevents over-accumulation of Res to balance metabolic costs. Our work highlights the stress-mediated induction and feedback inhibition of stilbene biosynthesis through a complex regulatory network involving multiple positive and negative transcriptional regulators.


Asunto(s)
Estilbenos , Vitis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Vitis/genética , Vitis/metabolismo , Estilbenos/metabolismo , Resveratrol/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126676

RESUMEN

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Oryza , Almidón Sintasa , Almidón Resistente/metabolismo , Oryza/genética , Almidón Sintasa/genética , Fitomejoramiento , Almidón , Amilosa , Proteínas de Plantas/genética
8.
FASEB J ; 38(17): e70013, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39225365

RESUMEN

Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.


Asunto(s)
Cartílago Articular , Condrocitos , Osteoartritis , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Factor de Transcripción SOX9 , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Condrocitos/metabolismo , Condrocitos/patología , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Proliferación Celular , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino
9.
Brain ; 147(3): 1075-1086, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816260

RESUMEN

Schizophrenia, a complex neuropsychiatric disorder, frequently experiences a high rate of misdiagnosis due to subjective symptom assessment. Consequently, there is an urgent need for innovative and objective diagnostic tools. In this study, we used cutting-edge extracellular vesicles' (EVs) proteome profiling and XGBoost-based machine learning to develop new markers and personalized discrimination scores for schizophrenia diagnosis and prediction of treatment response. We analysed plasma and plasma-derived EVs from 343 participants, including 100 individuals with chronic schizophrenia, 34 first-episode and drug-naïve patients, 35 individuals with bipolar disorder, 25 individuals with major depressive disorder and 149 age- and sex-matched healthy controls. Our innovative approach uncovered EVs-based complement changes in patients, specific to their disease-type and status. The EV-based biomarkers outperformed their plasma counterparts, accurately distinguishing schizophrenia individuals from healthy controls with an area under curve (AUC) of 0.895, 83.5% accuracy, 85.3% sensitivity and 82.0% specificity. Moreover, they effectively differentiated schizophrenia from bipolar disorder and major depressive disorder, with AUCs of 0.966 and 0.893, respectively. The personalized discrimination scores provided a personalized diagnostic index for schizophrenia and exhibited a significant association with patients' antipsychotic treatment response in the follow-up cohort. Overall, our study represents a significant advancement in the field of neuropsychiatric disorders, demonstrating the potential of EV-based biomarkers in guiding personalized diagnosis and treatment of schizophrenia.


Asunto(s)
Antipsicóticos , Trastorno Depresivo Mayor , Vesículas Extracelulares , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/diagnóstico , Esquizofrenia/diagnóstico , Biomarcadores , Proteínas del Sistema Complemento
10.
Chem Soc Rev ; 53(18): 9254-9305, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39143899

RESUMEN

With the increasing demand for energy and the climate challenges caused by the consumption of traditional fuels, there is an urgent need to accelerate the adoption of green and sustainable energy conversion and storage technologies. The integration of flexible thermoelectrics with other various energy conversion technologies plays a crucial role, enabling the conversion of multiple forms of energy such as temperature differentials, solar energy, mechanical force, and humidity into electricity. The development of these technologies lays the foundation for sustainable power solutions and promotes research progress in energy conversion. Given the complexity and rapid development of this field, this review provides a detailed overview of the progress of multifunctional integrated energy conversion and storage technologies based on thermoelectric conversion. The focus is on improving material performance, optimizing the design of integrated device structures, and achieving device flexibility to expand their application scenarios, particularly the integration and multi-functionalization of wearable energy conversion technologies. Additionally, we discuss the current development bottlenecks and future directions to facilitate the continuous advancement of this field.

11.
J Proteome Res ; 23(4): 1298-1312, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38500415

RESUMEN

Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.


Asunto(s)
Artritis Reumatoide , Exosomas , Células Madre Mesenquimatosas , Ratas , Animales , Exosomas/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Células Madre Mesenquimatosas/metabolismo , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo
12.
Hum Brain Mapp ; 45(1): e26532, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013633

RESUMEN

Cortical gray to white matter signal intensity ratio (GWR) measured from T1-weighted magnetic resonance (MR) images was associated with neurodegeneration and dementia. We characterized topological patterns of GWR during AD pathogenesis and investigated its association with cognitive decline. The study included a cross-sectional dataset and a longitudinal dataset. The cross-sectional dataset included 60 cognitively healthy controls, 61 mild cognitive impairment (MCI), and 63 patients with dementia. The longitudinal dataset included 26 participants who progressed from cognitively normal to dementia and 26 controls that remained cognitively normal. GWR was compared across the cross-sectional groups, adjusted for amyloid PET. The correlation between GWR and cognition performance was also evaluated. The longitudinal dataset was used to investigate GWR alteration during the AD pathogenesis. Dementia with ß-amyloid deposition group exhibited the largest area of increased GWR, followed by MCI with ß-amyloid deposition, MCI without ß-amyloid deposition, and controls. The spatial pattern of GWR-increased regions was not influenced by ß-amyloid deposits. Correlation between regional GWR alteration and cognitive decline was only detected among individuals with ß-amyloid deposition. GWR showed positive correlation with tau PET in the left supramarginal, lateral occipital gyrus, and right middle frontal cortex. The longitudinal study showed that GWR increased around the fusiform, inferior/superior temporal lobe, and entorhinal cortex in MCI and progressed to larger cortical regions after progression to AD. The spatial pattern of GWR-increased regions was independent of ß-amyloid deposits but overlapped with tauopathy. The GWR can serve as a promising biomarker of neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Estudios Longitudinales , Estudios Transversales , Placa Amiloide/complicaciones , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología , Cognición , Imagen por Resonancia Magnética , Demencia/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
13.
Hum Brain Mapp ; 45(2): e26604, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339890

RESUMEN

Disruptions of neural metabolism and function occur in parallel during Alzheimer's disease (AD). While many studies have shown diverse metabolic-functional relationships in specific brain regions, much less is known about how large-scale network-level functional activity is associated with the topology of metabolism in AD. In this study, we took the advantages of simultaneous PET/MRI and multivariate analyses to investigate the associations between AD-related stereotypical spatial patterns (topographies) of glucose metabolism, measured by fluorodeoxyglucose PET, and functional connectivity, measured by resting-state functional MRI. A total of 101 participants, including 37 patients with AD, 25 patients with mild cognitive impairment (MCI), and 39 cognitively normal controls, underwent PET/MRI scans and cognitive assessments. Three pairs of distinct but optimally correlated metabolic and functional topographies were identified, encompassing large-scale networks including the default-mode, executive and control, salience, attention, and subcortical networks. Importantly, the metabolic-functional associations were not only limited to one-to-one-corresponding regions, but also occur in remote and non-overlapping regions. Furthermore, both glucose metabolism and functional connectivity, as well as their linkages, exhibited various degrees of disruptions in patients with MCI and AD, and were correlated with cognitive decline. In conclusion, our results support distributed and heterogeneous topographic associations between metabolism and function, which are jeopardized by AD. Findings of this study may deepen our understanding of the pathological mechanism of AD through the perspectives of both local energy efficiency and long-term interactions between synaptic disruption and functional disconnection contributing to the clinical symptomatology in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Encéfalo , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Glucosa/metabolismo
14.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486149

RESUMEN

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Asunto(s)
Clorofila , Luz Roja , Clorofila/metabolismo , Transcriptoma , Fotosíntesis , Azúcares , Carbono
15.
Small ; 20(25): e2310275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221708

RESUMEN

The interfacial carrier non-radiative recombination caused by buried defects in electron transport layer (ETL) material and the energy barrier severely hinders further improvement in efficiency and stability of perovskite solar cells (PSCs). In this study, the effect of the SnO2 ETL doped with choline chloride (CC), acetylcholine chloride (AC), and phosphocholine chloride sodium salt (PCSS) are investigated. These dopants modify the interface between SnO2 ETL and perovskite layer, acting as a bridge through synergistic effects to form uniform ETL films, enhance the interface contact, and passivate defects. Ultimately, compared with CC (which with ─OH) and AC (which with C═O), the PCSS with P═O and sodium ions groups is more beneficial for improving performance. The device based on PCSS-doped SnO2 ETL achieves an efficiency of 23.06% with a high VOC of 1.2 V, which is considerably higher than the control device (20.55%). Moreover, after aging for 500 h at a temperature of 25 °C and relative humidity (RH) of 30-40%, the unsealed device based on SnO2-PCSS ETL maintains 94% of its initial efficiency, while the control device only 80%. This study provides a meaningful reference for the design and selection of ideal pre-buried additive molecules.

16.
Basic Res Cardiol ; 119(4): 651-671, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563985

RESUMEN

Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.


Asunto(s)
Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Masculino , Apoptosis , Modelos Animales de Enfermedad , Ratones , Procesamiento Proteico-Postraduccional , Ratas
17.
PLoS Pathog ; 18(8): e1010693, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914009

RESUMEN

Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.


Asunto(s)
Infecciones por Klebsiella , Sepsis , Animales , Cápsulas Bacterianas , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Macrófagos del Hígado , Hígado , Ratones , Polisacáridos
18.
Plant Cell Environ ; 47(8): 2923-2935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38629334

RESUMEN

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.


Asunto(s)
Chrysanthemum , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/crecimiento & desarrollo , Chrysanthemum/metabolismo , Chrysanthemum/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Plantas Modificadas Genéticamente , Reproducción , Fotoperiodo
19.
Opt Lett ; 49(11): 3046-3049, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824324

RESUMEN

Solid-state indirect time-of-flight (iToF) cameras are crucial to numerous short-to-medium-range applications, owing to their advantages in terms of system integrability and long-term reliability. However, due to the low light intensity, the sensing range of iToF cameras is generally limited to a few meters, which hinders their wide applications. Further increasing the sensing range requires not only higher-power laser diodes but also well-designed driver circuits, which are based on prior knowledge of the laser diodes' equivalent circuits (ECs). However, experimental studies on ECs of a mounted, high-power vertical-cavity surface-emitting laser (VCSEL) array that comprehensively incorporates all parasitic components, especially parasitic stemming from printed circuit boards (PCBs), remain absent. In this Letter, an 850 nm VCSEL array with a 15.3 W peak power and a 581 MHz bandwidth is fabricated, and more importantly, its EC is experimentally established. Leveraging the accurate EC, a compact iToF camera with a sensing range up to 11.50 m is designed. In addition, a modified precision model is proposed to better evaluate the iToF camera's performance.

20.
Opt Lett ; 49(2): 306-309, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194554

RESUMEN

A novel, to the best of our knowledge, structure for spectral beam combining (SBC) is proposed, utilizing a polarization-separated feedback (PSF). A polarization separation element is introduced to separate the laser beam into a TE-polarized light and a TM-polarized light. The lower-power light is selected as the external feedback to adjust the resonant wavelength, while the other light is combined spectrally. Compared to the conventional SBC source with a similar feedback, the power and efficiency of the PSFSBC are improved by approximately 20%. Additionally, the beam quality in the non-SBC direction is optimized by 10%, and the power on the output coupler is reduced to nearly one-third. This provides an effective method for achieving an optimized SBC performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA