Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(5): 1606-1624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282268

RESUMEN

Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.


Asunto(s)
Arabidopsis , Gossypium , Gossypium/fisiología , Tolerancia a la Sal/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino , Estrés Fisiológico , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genomics ; 24(1): 474, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608304

RESUMEN

BACKGROUND: The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS: In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS: The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.


Asunto(s)
Gossypium , Gossypium/enzimología , Gossypium/genética , Evolución Molecular , Filogenia , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas
3.
Mol Genet Genomics ; 298(3): 755-766, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027022

RESUMEN

Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.


Asunto(s)
Gossypium , Gosipol , Gossypium/metabolismo , Gosipol/metabolismo , Filogenia , Genes myb/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
BMC Bioinformatics ; 23(1): 91, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291940

RESUMEN

BACKGROUND: Upland cotton provides the most natural fiber in the world. During fiber development, the quality and yield of fiber were influenced by gene transcription. Revealing sequence features related to transcription has a profound impact on cotton molecular breeding. We applied convolutional neural networks to predict gene expression status based on the sequences of gene transcription start regions. After that, a gradient-based interpretation and an N-adjusted kernel transformation were implemented to extract sequence features contributing to transcription. RESULTS: Our models had approximate 80% accuracies, and the area under the receiver operating characteristic curve reached over 0.85. Gradient-based interpretation revealed 5' untranslated region contributed to gene transcription. Furthermore, 6 DOF binding motifs and 4 transcription activator binding motifs were obtained by N-adjusted kernel-motif transformation from models in three developmental stages. Apart from 10 general motifs, 3 DOF5.1 genes were also detected. In silico analysis about these motifs' binding proteins implied their potential functions in fiber formation. Besides, we also found some novel motifs in plants as important sequence features for transcription. CONCLUSIONS: In conclusion, the N-adjusted kernel transformation method could interpret convolutional neural networks and reveal important sequence features related to transcription during fiber development. Potential functions of motifs interpreted from convolutional neural networks could be validated by further wet-lab experiments and applied in cotton molecular breeding.


Asunto(s)
Redes Neurales de la Computación
5.
BMC Plant Biol ; 21(1): 102, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602142

RESUMEN

BACKGROUND: Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear. RESULTS: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. CONCLUSIONS: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate 'glandless-seed' and 'glanded-plant' cotton cultivar.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/química , Gossypium/metabolismo , Gosipol/análisis , Gosipol/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética
6.
Planta ; 255(1): 23, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34923605

RESUMEN

MAIN CONCLUSION: GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.


Asunto(s)
Fibra de Algodón , Filogenia
7.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066899

RESUMEN

Plant NAC (NAM, ATAF1/2, and CUC2) family is involved in various development processes including Programmed Cell Death (PCD) associated development. However, the relationship between NAC family and PCD-associated cotton pigment gland development is largely unknown. In this study, we identified 150, 153 and 299 NAC genes in newly updated genome sequences of G. arboreum, G. raimondii and G. hirsutum, respectively. All NAC genes were divided into 8 groups by the phylogenetic analysis and most of them were conserved during cotton evolution. Using the vital regulator of gland formation GhMYC2-like as bait, expression correlation analysis screened out 6 NAC genes which were low-expressed in glandless cotton and high-expressed in glanded cotton. These 6 NAC genes acted downstream of GhMYC2-like and were induced by MeJA. Silencing CGF1(Cotton Gland Formation1), another MYC-coding gene, caused almost glandless phenotype and down-regulated expression of GhMYC2-like and the 6 NAC genes, indicating a MYC-NAC regulatory network in gland development. In addition, predicted regulatory mechanism showed that the 6 NAC genes were possibly regulated by light, various phytohormones and transcription factors as well as miRNAs. The interaction network and DNA binding sites of the 6 NAC transcription factors were also predicted. These results laid the foundation for further study of gland-related genes and gland development regulatory network.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Gossypium/anatomía & histología , Gossypium/genética , Pigmentación/genética , Proteínas de Plantas/genética , Cromosomas de las Plantas/genética , Diploidia , Duplicación de Gen , Perfilación de la Expresión Génica , Silenciador del Gen , Genes de Plantas , Modelos Biológicos , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Sintenía/genética
8.
BMC Genomics ; 21(1): 470, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640982

RESUMEN

BACKGROUND: Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS: In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION: This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.


Asunto(s)
Cromosomas de las Plantas , Gossypium/genética , Mapeo Cromosómico , Evolución Molecular , Genes de Plantas , Sintenía , Factores de Transcripción/genética
9.
BMC Plant Biol ; 20(1): 223, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429837

RESUMEN

BACKGROUND: Expansins (EXPs), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family in cotton are still unknown. RESULTS: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum. These genes were classified into four subfamilies, including 67 GhEXPAs, 8 GhEXPBs, 6 GhEXLAs, and 12 GhEXLBs, and divided into 15 subgroups. The 93 expansin genes are distributed over 24 chromosomes, excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons, and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns among different stages of cotton fibre development. Among them, 3 genes (GhEXPA4o, GhEXPA1A, and GhEXPA8h) were highly expressed in the initiation stage, 9 genes (GhEXPA4a, GhEXPA13a, GhEXPA4f, GhEXPA4q, GhEXPA8f, GhEXPA2, GhEXPA8g, GhEXPA8a, and GhEXPA4n) had high expression during the fast elongation stage, and GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. CONCLUSIONS: Our results provide a solid basis for further elucidation of the biological functions of expansin genes in relation to cotton fibre development and valuable genetic resources for future crop improvement.


Asunto(s)
Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/genética , Pared Celular/genética , Genes de Plantas , Gossypium/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo
10.
Theor Appl Genet ; 132(8): 2169-2179, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30941465

RESUMEN

KEY MESSAGE: The fuzzless gene GaFzl was fine mapped to a 70-kb region containing a GIR1 gene, Cotton_A_11941, responsible for the fuzzless trait in Gossypium arboreum DPL972. Cotton fiber is the most important natural textile resource. The fuzzless mutant DPL972 (Gossypium arboreum) provides a useful germplasm resource to explore the molecular mechanism underlying fiber and fuzz initiation and development. In our previous research, the fuzzless gene in DPL972 was identified as a single dominant gene and named GaFzl. In the present study, we fine mapped this gene using F2 and BC1 populations. By combining traditional map-based cloning and next-generation sequencing, we mapped GaFzl to a 70-kb region containing seven annotated genes. RNA-Sequencing and re-sequencing analysis narrowed these candidates to two differentially expressed genes, Cotton_A_11941 and Cotton_A_11942. Sequence alignment uncovered no variation in coding or promoter regions of Cotton_A_11942 between DPL971 and DPL972, whereas two single-base mutations in the promoter region and a TTG insertion in the coding region were detected in Cotton_A_11941 in DPL972. Cotton_A_11941 encoding a homologous gene of GIR1 (GLABRA2-interacting repressor) in Arabidopsis thaliana is thus the candidate gene most likely responsible for the fuzzless trait in DPL972. Our findings should lead to a better understanding of cotton fuzz formation, thereby accelerating marker-assisted selection during cotton breeding.


Asunto(s)
Genes de Plantas , Gossypium/genética , Mapeo Físico de Cromosoma , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Mutación INDEL/genética , Repeticiones de Microsatélite/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Semillas/genética
11.
Theor Appl Genet ; 132(8): 2461-2462, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31187153

RESUMEN

Unfortunately, Figs. 5 and 6 were interchanged in the results section. Figures should swap positions, whereas the legends should stay in the given order.

12.
Plant Biotechnol J ; 16(3): 699-713, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29087016

RESUMEN

Functional genomics has transformed from futuristic concept to well-established scientific discipline during the last decade. Cotton functional genomics promise to enhance the understanding of fundamental plant biology to systematically exploit genetic resources for the improvement of cotton fibre quality and yield, as well as utilization of genetic information for germplasm improvement. However, determining the cotton gene functions is a much more challenging task, which has not progressed at a rapid pace. This article presents a comprehensive overview of the recent tools and resources available with the major advances in cotton functional genomics to develop elite cotton genotypes. This effort ultimately helps to filter a subset of genes that can be used to assemble a final list of candidate genes that could be employed in future novel cotton breeding programme. We argue that next stage of cotton functional genomics requires the draft genomes refinement, re-sequencing broad diversity panels with the development of high-throughput functional genomics tools and integrating multidisciplinary approaches in upcoming cotton improvement programmes.


Asunto(s)
Genoma de Planta/genética , Genómica/métodos , Gossypium/genética , Sistemas CRISPR-Cas , Genotipo
13.
J Clin Lab Anal ; 32(6): e22423, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29498096

RESUMEN

BACKGROUND: Single-nucleotide polymorphisms (SNPs) were discovered in HBV-related gestational diabetes mellitus, but it still unclear whether these SNPs are associated with the susceptibility of HBV-related gestational diabetes mellitus. METHODS: The investigation of the association between CDKN2A polymorphisms and occurrence of HBV-related gestational diabetes mellitus (GDM) in Chinese was assessed in the case-control study. A total of 480 pregnant patients with HBV and 530 pregnant controls were consecutively recruited from January 2015 to December 2016. Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method was applied to measure genotyping for the detection of CDKN2A. RESULTS: The significant differences in the frequency of CDKN2A genotype distributions, rs10811661 and rs564398, were found by Chi-square test. Using conditional logistic analysis, individuals carrying the CDKN2A rs10811661 TC and TT genotypes and CDKN2A rs564398 AA and AG genotypes were related to a greater risk of HBV-related GDM compared with the genotype. CONCLUSIONS: In conclusion, the CDKN2A rs10811661 and rs564398 polymorphisms showed association with a greater risk of HBV-related GDM in a Chinese population.

14.
Theor Appl Genet ; 129(7): 1347-1355, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27053187

RESUMEN

KEY MESSAGE: Dominant glandless gene Gl 2 (e) was fine-mapped to a 15 kb region containing one candidate gene encoding an MYC transcription factor, sequence and expression level of the gene were analyzed. Cottonseed product is an excellent source of oil and protein. However, this nutrition source is greatly limited in utilization by the toxic gossypol in pigment glands. It is reported that the Gl 2 (e) gene could effectively inhibit the formation of the pigment glands. Here, three F2 populations were constructed using two pairs of near isogenic lines (NILs), which differ nearly only by the gland trait, for fine mapping of Gl 2 (e) . DNA markers were identified from recently developed cotton genome sequence. The Gl 2 (e) gene was located within a 15-kb genomic interval between two markers CS2 and CS4 on chromosome 12. Only one gene was identified in the genomic interval as the candidate for Gl 2 (e) which encodes a family member of MYC transcription factor with 475-amino acids. Unexpectedly, the results of expression analysis indicated that the MYC gene expresses in glanded lines while almost does not express in glandless lines. These results suggest that the MYC gene probably serves as a vital positive regulator in the organogenesis pathway of pigment gland, and low expression of this gene will not launch the downstream pathway of pigment gland formation. This is the first pigment gland-related gene identification in cotton and will facilitate the research on glandless trait, cotton MYC proteins and low-gossypol cotton breeding.


Asunto(s)
Mapeo Cromosómico , Genes Dominantes , Genes de Plantas , Gossypium/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Proteínas de Plantas/genética , Análisis de Secuencia de ADN
15.
Biomed Chromatogr ; 30(1): 42-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26179699

RESUMEN

Breast cancer is the most commonly diagnosed cancer and one of the leading causes of cancer death among women worldwide. It is a biologically variable disease with different molecular subtypes, risk factors, clinical behaviors and responses to treatment. Better understanding of the molecular changes associated with each subtype is essential for identifying new therapeutic targets and markers for the monitoring of treatment responses. In this pilot study, mass spectrometry-based metabolic profiling was performed to characterize the changes in serum profiles of patients with invasive ductal carcinoma (IDC) - the most common type of breast cancer. Serum samples from 20 IDC patients and 20 age- and gender-matched healthy subjects were analyzed and 15 differentially expressed metabolites were identified. These metabolites are involved in several metabolic pathways such as sphingolipid metabolism, phospholipid metabolism and fatty acid ß-oxidation. Among these, two classes of signaling lipids, lysophosphatidylethanolamine and ceramide, may play an important role in IDC development and progression. This study demonstrates metabolic profiling as a promising tool for finding disease biomarkers and our findings provide new directions for further mechanistic studies on the pathology of IDC.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Lípidos/sangre , Metabolómica/métodos , Adulto , Anciano , Neoplasias de la Mama/patología , Cromatografía Líquida de Alta Presión , Progresión de la Enfermedad , Femenino , Humanos , Espectrometría de Masas , Persona de Mediana Edad , Proyectos Piloto
16.
BMC Genomics ; 16: 55, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25652321

RESUMEN

BACKGROUND: Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. RESULTS: A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. CONCLUSION: Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.


Asunto(s)
Cromosomas/genética , Genoma de Planta , Gossypium/genética , Tetraploidía , Secuencia de Bases , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Ligamiento Genético , Marcadores Genéticos , Variación Genética , Repeticiones de Microsatélite/genética
17.
Genes (Basel) ; 15(3)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540437

RESUMEN

Genomic data in Gossypium provide numerous data resources for the cotton genomics community. However, to fill the gap between genomic analysis and breeding field work, detecting the featured genomic items of a subset cohort is essential for geneticists. We developed FPFinder v1.0 software to identify a subset of the cohort's fingerprint genomic sites. The FPFinder was developed based on the term frequency-inverse document frequency algorithm. With the short-read sequencing of an elite cotton pedigree, we identified 453 pedigree fingerprint genomic sites and found that these pedigree-featured sites had a role in cotton development. In addition, we applied FPFinder to evaluate the geographical bias of fiber-length-related genomic sites from a modern cotton cohort consisting of 410 accessions. Enriching elite sites in cultivars from the Yangtze River region resulted in the longer fiber length of Yangze River-sourced accessions. Apart from characterizing functional sites, we also identified 12,536 region-specific genomic sites. Combining the transcriptome data of multiple tissues and samples under various abiotic stresses, we found that several region-specific sites contributed to environmental adaptation. In this research, FPFinder revealed the role of the cotton pedigree fingerprint and region-specific sites in cotton development and environmental adaptation, respectively. The FPFinder can be applied broadly in other crops and contribute to genetic breeding in the future.


Asunto(s)
Gossypium , Fitomejoramiento , Humanos , Gossypium/genética , Sitios de Carácter Cuantitativo/genética , Genómica , Genoma de Planta
18.
J Adv Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810909

RESUMEN

INTRODUCTION: Transposon plays a vital role in cotton genome evolution, contributing to the expansion and divergence of genomes within the Gossypium genus. However, knowledge of transposon activity in modern cotton cultivation is limited. OBJECTIVES: In this study, we aimed to construct transposon-related variome within Gossypium genus and reveal role of transposon-related variations during cotton cultivation. In addition, we try to identify valuable transposon-related variations for cotton breeding. METHODS: We utilized graphical genome construction to build up the graphical transposon-related variome. Based on the graphical variome, we integrated t-test, eQTL analysis and Mendelian Randomization (MR) to identify valuable transposon activities and elite genes. In addition, a convolutional neural network (CNN) model was constructed to evaluate epigenomic effects of transposon-related variations. RESULTS: We identified 35,980 transposon activities among 10 cotton genomes, and the diversity of genomic and epigenomic features was observed among 21 transposon categories. The graphical cotton transposon-related variome was constructed, and 9,614 transposon-related variations with plasticity in the modern cotton cohort were used for eQTL, phenotypic t-test and Mendelian Randomization. 128 genes were identified as gene resources improving fiber length and strength simultaneously. 4 genes were selected from 128 genes to construct the elite gene panel whose utility has been validated in a natural cotton cohort and 2 accessions with phenotypic divergence. Based on the eQTL analysis results, we identified transposon-related variations involved in cotton's environmental adaption and human domestication, providing evidence of their role in cotton's adaption-domestication cooperation. CONCLUSIONS: The cotton transposon-related variome revealed the role of transposon-related variations in modern cotton cultivation, providing genomic resources for cotton molecular breeding.

19.
Plant Sci ; 345: 112132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788903

RESUMEN

In this study, the whole HD-Zip family members of G. hirsutum were identified, and GhHDZ76 was classified into the HD-Zip IV subgroup. GhHDZ76 was predominantly expressed in the 0-5 DPA of fiber development stage and localized in the nucleus. Overexpression of GhHDZ76 significantly increased the length and density of trichomes in Arabidopsis thaliana. The fiber length of GhHDZ76 knockout lines by CRISPR/Cas9 was significantly shorter than WT at the early elongation and mature stage, indicating that GhHDZ76 positively regulate the fiber elongation. Scanning electron microscopy showed that the number of ovule surface protrusion of 0 DPA of GhHDZ76 knockout lines was significantly lower than WT, suggesting that GhHDZ76 can also promote the initiation of fiber development. The transcript level of GhWRKY16, GhRDL1, GhEXPA1 and GhMYB25 genes related to fiber initiation and elongation in GhHDZ76 knockout lines were significantly decreased. Yeast two-hybrid and Luciferase complementation imaging (LCI) assays showed that GhHDZ76 can interact with GhWRKY16 directly. As a transcription factor, GhHDZ76 has transcriptional activation activity, which could bind to L1-box elements of the promoters of GhRDL1 and GhEXPA1. Double luciferase reporter assay showed that the GhWRKY16 could enhance the transcriptional activity of GhHDZ76 to pGhRDL1, but it did not promote the transcriptional activity of GhHDZ76 to pGhEXPA1. GhHDZ76 protein may also promote the transcriptional activity of GhWRKY16 to the downstream target gene GhMYB25. Our results provided a new gene resource for fiber development and a theoretical basis for the genetic improvement of cotton fiber quality.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Factores de Transcripción , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Sistemas CRISPR-Cas
20.
Plant Physiol Biochem ; 194: 281-301, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442360

RESUMEN

The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.


Asunto(s)
Metales Pesados , Estrés Fisiológico , Filogenia , Estrés Fisiológico/genética , Intrones , Exones , Metales Pesados/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Fibra de Algodón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA