Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell Rep ; 42(12): 2023-2038, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819387

RESUMEN

KEY MESSAGE: OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.


Asunto(s)
Hemípteros , Oryza , Animales , Transcriptoma , Oryza/genética , Oryza/metabolismo , Regulación de la Expresión Génica , Metaboloma , Hemípteros/fisiología , Regulación de la Expresión Génica de las Plantas
2.
J Dairy Sci ; 106(3): 1576-1585, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36631321

RESUMEN

Green hydrophobically modified butyrylated dextrin (BD) was used to modulate casein (CN). The CN/BD complex nanoparticles were formed at different CN-to-BD mass ratios based on a pH-driven technology. The interaction force, stability, and emulsifying properties of complex nanoparticles were investigated. The nanoparticles had a negative charge and a small particle size (160.03, 152.6, 155.9, 206.13, and 231.67 nm) as well as excellent thermal stability and environmental stability (pH 4.5, 5.5, 6.6, 7.5, 8.5, and 9.5; ionic strength, 50, 100, 200, and 500 mM). Transmission electron microscopy demonstrated the successful preparation of complex nanoparticles and their spherical shape. Fourier transform infrared spectroscopy, fluorescence spectroscopy, and dissociation analysis results showed that the main driving forces of formed CN/BD nanoparticles were hydrogen bonding and hydrophobic interaction. Furthermore, the CN/BD nanoparticles (CN/BD mass ratio, 1:1; weight/weight) exhibited the lowest creaming index, and optical microscopy showed that it has the most evenly dispersed droplets after 7 d of storage, which indicates that the CN/BD nanoparticles had excellent emulsifying properties. Butyrylated dextrin forms complex nanoparticles with CN through hydrogen bonding and hydrophobic interaction to endow CN with superior properties. The results showed that it is possible to use pH-driven technology to form protein-polysaccharide complex nanoparticles, which provides some information on the development of novel food emulsifiers based on protein-polysaccharide nanoparticles. The study provided significant information on the improvement of CN properties and the development of emulsions based on CN.


Asunto(s)
Caseínas , Nanopartículas , Animales , Caseínas/química , Dextrinas , Emulsionantes , Emulsiones/química , Polisacáridos , Nanopartículas/química , Tamaño de la Partícula
3.
Environ Res ; 202: 111658, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34252434

RESUMEN

Soil microbial fuel cells with water flow (W-SMFCs) as a driven force of substrate transport were constructed. Electricity generation, benzo[a]pyrene (BaP) removal, microbial communities and microbial molecular ecological networks were compared between W-SMFCs and their control reactors (without water flow, C-SMFCs) in 240 days of operation. The W-SMFCs started up faster than C-SMFCs (37 days vs. 50 days) and output higher startup voltage (148.45 mV vs. 111.90 mV). The water flow caused higher removal efficiency of BaP at sites >1 cm from the anode (S > 1 cm) than at sites <1 cm from the anode (S < 1 cm) in W-SMFCs, whereas in C-SMFCs, the removal efficiency of BaP at S< 1 cm was higher than that at S> 1 cm. The removal efficiency of BaP at S> 1 cm in W-SMFCs was up to 1.7 times higher than that at S> 1 cm in C-SMFCs on the 91st day. After 240 days of operation, the biodegradation efficiency of absolute BaP amount was 45.95% in W-SMFCs, being 20% higher than that in C-SMFCs (38.17%). Moreover, the water flow caused highly tight interaction among the microbial species, which could be beneficial to BaP biodegradation. Conclusively, the water flow in soil was very beneficial for startup and biodegradation of BaP in SMFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microbiota , Benzo(a)pireno , Biodegradación Ambiental , Electricidad , Suelo , Agua
4.
Molecules ; 26(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34641557

RESUMEN

Using bamboo powder biochar as raw material, high-quality meso/microporous controlled hierarchical porous carbon was prepared-through the catalysis of Fe3+ ions loading, in addition to a chemical activation method-and then used to adsorb copper ions in an aqueous solution. The preparation process mainly included two steps: load-alkali leaching and chemical activation. The porosity characteristics (specific surface area and mesopore ratio) were controlled by changing the K2CO3 impregnation ratio, activation temperature, and Fe3+ ions loading during the activation process. Additionally, three FBPC samples with different pore structures and characteristics were studied for copper adsorption. The results indicate that the adsorption performance of the bamboo powder biochar FBPC material was greatly affected by the meso/micropore ratio. FBPC 2.5-900-2%, impregnated at a K2CO3: biochar ratio of 2.5 and a Fe3+: biochar mass ratio of 2%, and activated at 900 °C for 2 h in N2 atmosphere, has a very high specific surface area of 1996 m2 g-1 with a 58.1% mesoporous ratio. Moreover, it exhibits an excellent adsorption capacity of 256 mg g-1 and rapid adsorption kinetics for copper ions. The experimental results show that it is feasible to control the hierarchical pore structure of bamboo biochar-derived carbons as a high-performance adsorbent to remove copper ions from water.


Asunto(s)
Carbono/química , Cloruros/química , Cobre/química , Compuestos Férricos/química , Sasa/química , Absorción Fisicoquímica , Carbón Orgánico/química , Polvos/química , Espectrofotometría Atómica/instrumentación , Espectrofotometría Atómica/métodos , Purificación del Agua/métodos
5.
Molecules ; 26(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34684697

RESUMEN

A large amount of coal gasification slag is produced every year in China. However, most of the current disposal is into landfills, which causes serious harm to the environment. In this research, coal gasification fine slag residual carbon porous material (GFSA) was prepared using gasification fine slag foam flotation obtained carbon residue (GFSF) as raw material and an adsorbent to carry out an adsorption test on waste liquid containing methylene blue (MB). The effects of activation parameters (GFSF/KOH ratio mass ratio, activation temperature, and activation time) on the cation exchange capacity (CEC) of GFSA were investigated. The total specific surface area and pore volume of GSFA with the highest CEC were 574.02 m2/g and 0.467 cm3/g, respectively. The degree of pore formation had an important effect on CEC. The maximum adsorption capacity of GFSA on MB was 19.18 mg/g in the MB adsorption test. The effects of pH, adsorption time, amount of adsorbent, and initial MB concentration on adsorption efficiency were studied. Langmuir isotherm and quasi second-order kinetic model have a good fitting effect on the adsorption isotherm and kinetic model of MB.

6.
J Cell Physiol ; 234(6): 9849-9861, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30417395

RESUMEN

Increasing evidence has suggested high-fat diet (HFD) is an independent risk factor for myocardial ischemia/reperfusion (MI/R) injury. Long noncoding RNAs (lncRNAs) recently attracted much attraction in the study of MI/R injury. However, the functional questions of specific lncRNAs in HFD-induced MI/R injury have not been well elucidated. Uc.48+ is a lncRNA from a transcribed ultraconserved region (T-UCR) of human, mouse, and rat genomes. Here, we explored the aggravating role of uc.48+and identified purinergic P2X7 receptor (P2X7R) as a downstream regulator of uc.48+ in HFD-induced MI/R vulnerability. We demonstrated uc.48+ expression was upregulated, accompanied by the corresponding upregulation of P2X7R in HFD I/R myocardium and HFD-induced MI/R vulnerability. Overexpression of uc.48+enhanced, whereas silencing of uc.48 + decreased the expression of P2X7R, cardiomyocyte apoptosis, and MI/R injury. The functional relevance of uc.48+ regulated P2X7R expression and the subsequent NF-κB signaling to promote cardiomyocyte apoptosis was supported by inhibition of P2X7R with its specific antagonist (A438079) as well as the inhibitor of NF-κB signaling (pyrrolidine dithiocarbamate, PDTC) in H9c2 hypoxia/reoxygenation (H/R) cells transfected with pcDNA3.0-uc.48 + plasmid, and RNA immunoprecipitation (RIP) suggested uc.48+ could interact with transcription factor Sp1. Importantly, Sp1 inhibitor (mithramycin, MIT) was found to suppress uc.48+ -induced P2X7R expression and the NF-κB signaling and cardiomyocyte apoptosis. Our findings provide a potential novel mechanism through which uc.48+ boosts cardiomyocyte apoptosis and MI/R vulnerability to HFD. Thus, uc.48+ is a novel regulator of HFD-induced MI/R injury; targeting uc.48+ may be a novel therapeutic approach of MI/R vulnerability to HFD.


Asunto(s)
Dieta Alta en Grasa , Daño por Reperfusión Miocárdica/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis , Regulación de la Expresión Génica , Masculino , Miocitos Cardíacos/fisiología , ARN Largo no Codificante/farmacología , ARN Mensajero , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
7.
Pestic Biochem Physiol ; 154: 60-66, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30765057

RESUMEN

Generalist phytophagous insects adapt to adventurous chemical environment in a wide variety of host plants by extraordinary detoxifying metabolic abilities. However, how polyphagous insect cope with the diversity of plant defenses remains largely unknown and only a few counter-defense genes detoxifying a wide range of toxic secondary metabolites have been well characterized. Here, we identify a cytochrome P450 gene (CYP6AB60) from tobacco cutworm (Spodoptera litura) in response to three different plant's defense metabolites. After being exposed to artificial diet supplemented with coumarin (COU), xanthotoxin (XAN) or tomatine (TOM), activities of P450 and CYP6AB60 transcript levels in both midgut and fat body tissues were significantly increased. Developmental expression analysis revealed that CYP6AB60 was expressed highly during the larval stages, and tissue distribution analysis showed that CYP6AB60 was expressed extremely high in the midgut, which correspond to the physiological role of CYP6AB60 from S. litura larvae in response to plant allelochemicals. Furthermore, when larvae are injected with double-stranded RNA (dsRNA) specific to CYP6AB60, levels of this transcript in the midgut and fatbody decrease and the negative effect of plant's defense metabolites on larval growth is magnified. These data demonstrate that the generalist insect S. litura might take advantage of an individual detoxificative gene CYP6AB60 to toxic secondary metabolites from different host plants. The CYP6AB60 can be a potential gene to carry out RNAi-mediated crop protection against the major polyphagous pest S. litura in the future.


Asunto(s)
Familia 6 del Citocromo P450/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Feromonas/farmacología , Spodoptera/efectos de los fármacos , Animales , Cumarinas/farmacología , Tolerancia a Medicamentos/genética , Larva/genética , Metoxaleno/farmacología , Interferencia de ARN , Spodoptera/genética , Tomatina/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-29932974

RESUMEN

The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens.


Asunto(s)
Fertilidad/genética , Hemípteros/fisiología , Proteínas de Insectos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Polimorfismo de Nucleótido Simple , Vitelogeninas/genética , Animales , ADN Complementario/biosíntesis , ADN Complementario/genética , Regulación de la Expresión Génica/fisiología , Hemípteros/enzimología , Hemípteros/metabolismo , Proteínas de Insectos/genética , Peptidil-Dipeptidasa A/genética , Regiones Promotoras Genéticas , Unión Proteica , ARN/aislamiento & purificación , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
9.
Sci Total Environ ; 918: 170608, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307291

RESUMEN

Biochar contains biotoxic aromatic compounds, and their influence on nitrogen-fixing cyanobacteria, the critical nitrogen fixer in paddy soil, has never been tested. Here, the physiological, metabolomic, and transcriptomic analyses of Nostoc sp. PCC7120 in response to biochar leachate were performed. The results suggested that biochar leachate inhibited the efficiency of photosynthesis, nitrogen fixation, and nitrate assimilation activities of nitrogen-fixing cyanobacteria. Biochar leachate containing aromatic compounds and odd- and long-chain saturated fatty acids impaired the membrane structure and antenna pigments, damaged the D1 protein of the oxygen evolution complex, and eventually decreased the electron transfer chain activity of photosystem II. Moreover, the nitrogen fixation and nitrate assimilation abilities of nitrogen-fixing cyanobacteria were inhibited by a decrease in photosynthetic productivity. A decrease in iron absorption was another factor limiting nitrogen fixation efficiency. Our study highlights that biochar with relatively high contents of dissolved organic matter poses a risk to primary nitrogen assimilation reduction and ecosystem nitrogen loss. Further evidence of the potential negative effects of biochar leachates on the fixation and assimilation capacity of nitrogen by soil microbes is needed to evaluate the impact of biochar on soil multifunctionality prior to large-scale application.


Asunto(s)
Cianobacterias , Nitratos , Ecosistema , Nitrógeno/análisis , Fijación del Nitrógeno , Carbón Orgánico/química , Cianobacterias/metabolismo , Suelo/química
10.
Diab Vasc Dis Res ; 21(2): 14791641241244658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597578

RESUMEN

BACKGROUND: The intricate interaction between oxidative stress and atherosclerotic cardiovascular disease (ASCVD) is an essential area of research because of the potential role of oxidative homeostasis in regulating ASCVD risk. This study aimed to investigate the relationship between the oxidative balance score (OBS) and the 10-years risk of ASCVD to gain insight into how oxidative balance affects cardiovascular health. METHODS: This cross-sectional study analyzed National Health and Nutrition Examination Survey (NHANES) 2011-2020 data (40-79 age group), exploring OBS's link to 10-years ASCVD risk. OBS categorized dietary and lifestyle factors. Multivariate logistic regression controlled for age, sex, race, and demographics. A restricted cubic spline examined linear relationships; robustness was ensured through subgroup analyses. RESULTS: Analysis of 4955 participants reveals a negative association between OBS and 10-years ASCVD risk. Continuous OBS adjusted OR: 0.97 (95% CI: 0.95∼0.99, p < .001). Quartile analysis shows reduced risk in Q2 0.88 (95% CI: 0.63∼1.22, p = .43), Q3 0.92 (95% CI: 0.66∼1.28, p = .614), and Q4 0.59 (95% CI: 0.42∼0.83, p = .002) compare Q1. Quartile analysis indicated decreasing risk in higher OBS quartiles. Lifestyle OBS and Dietary OBS demonstrated similar trends. Stratified analyses highlight race and hypertension as effect modifiers (p < .05). CONCLUSION: Our study suggests an association between higher OBS and a reduced 10-years ASCVD risk. However, causation should not be inferred, and in the future, more extensive clinical and fundamental research is required to delve deeper into this association.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Encuestas Nutricionales , Estudios Transversales , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Estrés Oxidativo
11.
Front Cardiovasc Med ; 10: 1249401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674809

RESUMEN

Background: In the United States, the relationship between visceral obesity and the risk of developing atherosclerosis cardiovascular disease (ASCVD) for the first time in 10 years is unclear. Methods: Data for this cross-sectional study came from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020. We collected variable information related to 10-year ASCVD risk and visceral obesity reliable indicators [Visceral obesity index (VAI) and Lipid accumulation product (LAP)]. And we used multiple logistic regression to analyze the correlation of visceral obesity indicators (VAI and LAP) with 10-year ASCVD risk. In addition, we assessed the linear relationship between VAI or LAP and 10-year ASCVD risk by smoothing curve fitting. Finally, we conducted subgroup analysis and sensitivity analysis after excluding participants with extreme VAI and LAP values to ensure that we obtained accurate and reliable results. Results: Our study included a total of 1,547 participants (mean age: 56.5 ± 10.1, 60% of males). The results of the multiple logistic regression showed that compared with participants with the lowest VAI in the 1st Quartile (≤0.79), the adjusted OR values for VAI and elevated 10-year ASCVD risk in Q3 (1.30-2.14), and Q4 (≥2.15) were 2.58 (95% CI: 1.24-5.36, P = 0.011), 15.14 (95% CI: 6.93-33.05, P < 0.001), respectively. Compared with participants with the lowest LAP in the 1st Quartile (≤28.29), the adjusted OR values for VAI and elevated 10-year ASCVD risk in Q3 (46.52-77.00), and Q4 (≥77.01) were 4.63 (95% CI: 2.18-9.82, P < 0.001), 16.94 (95% CI: 6.74-42.57, P < 0.001), respectively. Stratified analysis showed that the association between VAI or LAP and the first ASCVD event was more pronounced in males. Conclusion: Higher VAI or LAP scores are significantly associated with elevated 10-year ASCVD risk in adults aged 40 to 79 in the USA, which suggested that monitoring visceral obesity is crucial to reduce the risk of a first ASCVD event.

12.
Mol Biomed ; 4(1): 45, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032415

RESUMEN

The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.

13.
Front Nutr ; 10: 1122045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342551

RESUMEN

Postmenopausal osteoporosis is one of the most common metabolic diseases in old women, and supplementing estrogen through bioactive substances is one of the important ways to improve menopausal syndrome. Some studies have confirmed that soybean isoflavone has estrogenic activity, and the main active component of soybean isoflavones is isoflavone aglycones. However, few studies have investigated the improvement effect of high-purity soy isoflavone aglycones on postmenopausal osteoporosis. Thus, the effect of different doses of high-purity soybeans isoflavone aglycone on the ovariectomized female osteoporosis rat model was evaluated by oral gavage. The rats were divided into seven experimental groups including SHAM, OVX, EE, SIHP, AFDP-L, AFDP-M, and AFDP-H, which was administered for 60 days from 30 days after ovariectomy. We collected blood from the abdominal aorta of rats on the 30th, 60th, and 90th days respectively, analyzed its serum biochemistry, and took out the femur for micro-CT imaging and bone microstructure parameter analysis. Results showed that the intervention effect of AFDP-H group on osteoporosis rats at 60 and 90 days was similar to that of EE group, and superior to the OVX group, SIHP group, AFDP-L group, AFDP-M group. The AFDP-H group inhibited the decrease in serum bone markers, bone density, trabeculae quantity, trabeculae thickness, and bone volume fraction, and increased the trabecular separation caused by ovariectomy, thereby significantly improving bone microstructure. It also prevented continuous weight gain and increased cholesterol levels in female rats. This study provided theoretical to application of soybean isoflavone aglycone in the intervention of osteoporosis. and confirmed that could replace chemical synthetic estrogen drugs.

14.
Food Res Int ; 156: 111294, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651100

RESUMEN

The effect of pullulanase enzymatic hydrolysis time on the textural properties of acorn vermicelli was investigated by texture analyzer. And the influencing mechanism was revealed by exploring the physicochemical properties of acorn starch under the optimum enzymatic hydrolysis time by texture analyzer, scanning electron microscopy, X-ray diffraction and brabender viscograph. After acorn starch was hydrolyzed by pullulanase for 14 h, acorn vermicelli had excellent textural properties. In addition, the enzymatic hydrolysis transformed the acorn starch from spherical particles with smooth surface to polygonal particles with rough surface, as well as transformed the crystal structure of acorn starch from C-type to B-type. Compared with native acorn starch, enzyme hydrolyzed acorn starch had higher amylose content, better freeze-thaw stability, lower swelling power and, breakdown viscosity, stronger gel strength and, higher light transmittance. These excellent properties contributed to the exceptional textural properties and quality of acorn vermicelli. The results of this study may provide valuable information on the preparation of acorn vermicelli.


Asunto(s)
Amilosa , Quercus , Amilosa/química , Glicósido Hidrolasas , Hidrólisis , Almidón/química
15.
Front Cardiovasc Med ; 9: 961414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204588

RESUMEN

Purpose: The study aims to evaluate the effects of high-intensity and moderate-intensity exercise training on cardiopulmonary function and exercise endurance in patients with coronary artery diseases (CAD). Methods: We performed a systematic search of the English and Chinese databases from their inception to March 2022. Randomized controlled trials (RCTs) were included to compare high-intensity and moderate-intensity exercise training on cardiopulmonary function in patients with CAD. The primary outcomes included peak oxygen uptake (peak VO2) and anaerobic threshold (AT). The secondary outcomes included left ventricular ejection fraction (LVEF), exercises duration (ED), respiratory exchange ratio (RER), resting heart rate (RHR), peak heart rate (PHR) and oxygen pulse (O2 pulse). The continuous variables were expressed as mean differences (MD) along with their corresponding standard deviations (SD), and the I2 test was applied in the assessment of heterogeneity. Results: After systematically literature search, 19 studies were finally selected for our meta-analysis (n = 1,036), with 511 patients in the experimental group (high-intensity exercise) and 525 patients in the control group (moderate-intensity exercise). The results showed that high-intensity exercise significantly increased patients' Peak VO2 [MD = 2.67, 95% CI (2.24, 3.09), P < 0.00001], LVEF [MD = 3.60, 95% CI (2.17, 5.03), P < 0.00001], ED [MD = 37.51, 95% CI (34.02, 41.00), P < 0.00001], PHR [MD = 6.86, 95% CI (4.49, 9.24), P < 0.00001], and O2 pulse [MD = 0.97, 95% CI (0.34, 1.60), P = 0.003] compared with moderate-intensity exercise. However, there were no significant differences in AT [MD = 0.49, 95% CI (-0.12, 1.10), P = 0.11], RER [MD = 0.00, 95% CI (-0.01, 0.02), P = 0.56], and RHR [MD = 1.10, 95% CI (-0.43, 2.63), P = 0.16]. Conclusion: Our results show that high-intensity exercise training has more significant positive effects compared with moderate-intensity exercise training in improving peak VO2, LVEF, ED, PHR and O2 pulse in patients with CAD, while no significant differences were observed in AT, RER and RHR. To sum up, high-intensity exercise training is better than moderate-intensity exercise training in improving cardiopulmonary function and exercise endurance in patients with CAD. Systematic review registration: PROSPERO (CRD42022328475), https://www.crd.york.ac.uk/PROSPERO/.

16.
Chemosphere ; 291(Pt 1): 132729, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34718017

RESUMEN

As a typical aromatic disinfection byproduct (DBP), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) attracts much concern due to the potential toxicity. To further evaluate the role of 2,6-DCBQ as an intermediate DBP in water with or without chlorine, their decomposition characteristics and transformation potential to the regulated DBPs (i.e., trihalomethanes (THMs) and haloacetic acids (HAAs)) were investigated under different chlorine doses, pH values, temperatures, contact times, and bromide levels. The decomposition of 2,6-DCBQ under different conditions all fit apparent first-order kinetics. The hydrolysis rate constants of 2,6-DCBQ significantly increased with pH. The half-live values of 2,6-DCBQ were 108.3-568.7 h at pH 6.0-6.5, and 1.8-31.1 h at pH 7.0-8.5. During the hydrolysis of 2,6-DCBQ, there was no THMs and HAAs generated. During chlorination, 2,6-DCBQ decayed rapidly accompanied by the fast formation of trichloromethane (TCM) and the gradual generation of dichloroacetic acid and trichloroacetic acid. The molar conversion rates of 2,6-DCBQ-to-THMs (i.e., TCM) and 2,6-DCBQ-to-HAAs were 2.9-10.0% and 0.1-2.2% under different conditions. The presence of bromide increased the conversion rates of 2,6-DCBQ-to-THMs and caused the generation of brominated THMs and HAAs. According to the decomposition characteristics of 2,6-DCBQ and the formation trends of THMs and HAAs under different conditions, multiple formation pathways from 2,6-DCBQ to THMs and HAAs were proposed.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Benzoquinonas , Cloro , Desinfección , Halogenación , Cinética , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
17.
Food Res Int ; 158: 111450, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840189

RESUMEN

In this work, the combination treatment of zinc sulfate fortification and germination was used to increase zinc content and bioavailability of brown rice. The zinc content in brown rice during germination time of 10-34 h gradually increased with the increase of zinc sulfate concentration (0-100 mg/L). Brown rice with zinc fortified concentration of 25 mg/L and germinated for 28 h was recommended, which reached the maximum (26.31%) of zinc bioavailability and met the requirements of recommended dietary intake (RDA) of zinc. The physicochemical and structural characteristics of brown rice under different treatment conditions were compared. As the germination time prolonged, the germination rate (%), total phenol content, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate (%) and Gamma-aminobutyric acid content of fortified or unfortified brown rice increased, while the phytic acid content decreased. The fortification treatment improved total phenol content and antioxidant activity of germinated brown rice. The crystalline structure of brown rice was destroyed during germination, but no significant change of crystalline structure caused by zinc sulfate fortification was found. These results could provide valuable reference for the application of germination in the field of brown rice fortification and the preparation of zinc-rich germinated brown rice products.


Asunto(s)
Oryza , Disponibilidad Biológica , Oryza/química , Fenoles/análisis , Semillas/química , Zinc/análisis , Sulfato de Zinc/análisis
18.
Food Res Int ; 161: 111825, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192893

RESUMEN

This study explored the influence of germination and fortification on the functionality and digestibility of brown rice from the perspective of starch structure changes. The surface of germinated brown rice starch appeared some pits and holes under the action of endogenous hydrolase, and the amylose content, relative crystallinity and short-range order of the starch decreased significantly after germination. However, the fortification treatment seemed to intensify the enzymatic hydrolysis of germinated brown rice starch, showing deeper pits, lower short-range order and less double helix structure. These changes in structural characteristics led to a significant decrease in peak viscosity, enthalpy change (ΔH) and starch hydrolysis rate after germination and fortification treatment. As the germination time increased, the trend became more obvious. And the peak viscosity and enthalpy change (ΔH) of fortified brown rice reached the minimum values of 290.89 cP and 13.73 J/g after 34 h of germination, respectively, while the starch hydrolysis rate reached the maximum value of 85.42 %. Overall, the combination of germination and fortification could be an effective method to adjust the functional and digestive characteristics of starch by changing its structural characteristics.


Asunto(s)
Oryza , Almidón , Amilosa , Hidrolasas , Oryza/química , Almidón/química , Zinc
19.
Sci Total Environ ; 796: 148919, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34273824

RESUMEN

There is a growing concern on the fate and the consequent ecological or health risks of antibiotics and antibiotic resistance genes (ARGs) in natural or artificial water environment. The effluent of wastewater treatment plants (WWTPs) has been reported to be an important source of antibiotics and ARGs in the environment. WWTP effluent could be discharged into surface water bodies or recycled, either of which could lead to different exposure risks. The impact of WWTP effluents on the levels of antibiotics and ARGs in effluent-receiving water bodies and the removal efficiency of antibiotics and ARGs in reclaimed wastewater treatment plants (RWTPs) were seldom simultaneously investigated. Thus, in this study, we investigated the occurrence of antibiotics and ARGs in four WWTP effluents, and their downstream effluent-receiving water bodies and RWTPs in seasons of low-water-level. The total concentrations of ofloxacin, norfloxacin, ciprofloxacin, roxithromycin, azithromycin, erythromycin, tetracycline, oxytetracycline, chlortetracycline, and sulfamethoxazole in the secondary effluents were 1441.6-4917.6 ng L-1. Ofloxacin had the highest concentration. The absolute and relative abundances of total ARGs (qnrD, qnrS, ermA, ermB, tetA, tetQ, sul1, and sul2) in the secondary effluents were 103-104 copies mL-1 and 10-4-10-2 ARG/16S rRNA. Sul1 and sul2 were the major species with the highest detection frequencies and levels. In most cases, WWTP effluents were not the major contributors to the levels and species of antibiotics and ARGs in the surface water bodies. Four RWTPs removed 43.5-98.9% of antibiotics and - 0.19-2.91 log of ARGs. Antibiotics and ARGs increased in chlorination, ozonation and filtration units. Antibiotics had significantly positive correlations with ARGs, biological oxygen demands, total phosphorus, total nitrogen, and ammonia nitrogen in the four effluent-receiving water bodies. In RWTPs, the total concentrations of antibiotics showed a significant positive correlation with the total abundance of ARGs.


Asunto(s)
Antibacterianos , Purificación del Agua , Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , ARN Ribosómico 16S , Aguas Residuales/análisis , Agua
20.
Environ Pollut ; 285: 117409, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049133

RESUMEN

Insecticide resistance is one of the major obstacles for controlling agricultural pests. There have been a lot of studies on insecticides stimulating the development of insect resistance. Herbicides account for the largest sector in the agrochemical market and are often co-applied with insecticides to control insect pests and weeds in the same cropland ecosystem. However, whether and how herbicides exposure will affect insecticide resistance in insect pests is largely unexplored. Here we reported that after exposure to herbicide butachlor, the lepidopteran Spodoptera litura larvae reduced susceptibility to the insecticide chlorpyrifos. Docking simulation studies suggested that general odorant-binding protein 2 (GOBP2) could bind to butachlor with high binding affinity, and silencing SlGOBP2 by RNA interference (RNAi) decreased larval tolerance to chlorpyrifos. Butachlor exposure induced ecdysone biosynthesis, whose function on increasing chlorpyrifos tolerance was supported in synergism experiments and confirmed by silencing the key gene (SlCYP307A1) for ecdysone synthesis. Butachlor exposure also activated the expression of detoxification enzyme genes. Silencing the genes with the highest herbicide-induced expression among the three detoxification enzyme genes led to increased larval susceptibility to chlorpyrifos. Collectively, we proposed a new mechanism that olfactory recognition of herbicides by GOBP2 triggers insect hormone biosynthesis and leads to high metabolic tolerance against insecticides. These findings provide valuable information for the dissection of mechanisms of herbicide-induced resistance to insecticides and also supplements the development of reduced-risk strategies for pest control.


Asunto(s)
Cloropirifos , Herbicidas , Insecticidas , Percepción Olfatoria , Acetanilidas , Animales , Cloropirifos/toxicidad , Ecdisona , Ecosistema , Herbicidas/toxicidad , Insecticidas/toxicidad , Larva , Receptores Odorantes , Spodoptera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA