Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(15): 153901, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499901

RESUMEN

The cavity electromechanical devices with radiation-pressure interaction induced Kerr-like nonlinearity are promising candidates to generate microwave frequency combs. We construct a silicon-nitride membrane based superconducting cavity electromechanical device and study two mechanical modes synergistic frequency combs. Around the threshold of intracavity field instability, we first show independent frequency combs with tooth spacing equal to each mechanical mode frequency. At the overlap boundaries of these two individual mechanical mode mediated instability thresholds, we observe hybridization of frequency combs based on the cavity field mediated indirect coupling between these two mechanical modes. The spectrum lines turn out to be unequally spaced, but can be recognized in combinations of the coexisting frequency combs. Beyond the boundary, the comb reverts to the single mode case, and which mechanical mode frequency will the tooth spacing be depends on the mode competition. Our work demonstrates mechanical mode competition enabled switchability of frequency comb tooth spacing and can be extended to other devices with multiple nonlinearities.

2.
Nat Commun ; 14(1): 4397, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474535

RESUMEN

Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena and promise new applications in quantum technologies. In these nonperturbative regimes, a qubit-resonator system has an entangled quantum vacuum with a nonzero average photon number in the resonator, where the photons are virtual and cannot be directly detected. The vacuum field, however, is able to induce the symmetry breaking of a dispersively coupled probe qubit. We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator deep-strongly coupled with a flux qubit. This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.

3.
ACS Appl Mater Interfaces ; 13(16): 19301-19311, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856189

RESUMEN

Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA