Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(3): e0001123, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36877072

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum. Oligomannose-type glycosylation has been identified at the N78 site. Here, the unbiased molecular functions of ORF8 are also demonstrated. Via an immunoglobulin-like fold in a glycan-independent manner, both exogenous and endogenous ORF8 interacts with human calnexin and HSPA5. The key ORF8-binding sites of Calnexin and HSPA5 are indicated on the globular domain and the core substrate-binding domain, respectively. ORF8 induces species-dependent endoplasmic reticulum stress-like responses in human cells exclusively via the IRE1 branch, including intensive HSPA5 and PDIA4 upregulation, with increases in other stress-responding effectors, including CHOP, EDEM and DERL3. ORF8 overexpression facilitates SARS-CoV-2 replication. Both stress-like responses and viral replication induced by ORF8 have been shown to result from triggering the Calnexin switch. Thus, ORF8 serves as a key unique virulence gene of SARS-CoV-2, potentially contributing to COVID-19-specific and/or human-specific pathogenesis. IMPORTANCE Although SARS-CoV-2 is basically regarded as a homolog of SARS-CoV, with their genomic structure and the majority of their genes being highly homologous, the ORF8 genes of SARS-CoV and SARS-CoV-2 are distinct. The SARS-CoV-2 ORF8 protein also shows little homology with other viral or host proteins and is thus regarded as a novel special virulence gene of SARS-CoV-2. The molecular function of ORF8 has not been clearly known until now. Our results reveal the unbiased molecular characteristics of the SARS-CoV-2 ORF8 protein and demonstrate that it induces rapidly generated but highly controllable endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin in human but not mouse cells, providing an explanation for the superficially known in vivo virulence discrepancy of ORF8 between SARS-CoV-2-infected patients and mouse.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Calnexina/genética , SARS-CoV-2/genética , Replicación Viral
2.
J Virol ; 97(11): e0110123, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37916835

RESUMEN

IMPORTANCE: Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.


Asunto(s)
Protección Cruzada , Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Ratones , Anticuerpos Antivirales , Hurones , Gripe Aviar , Vacunas contra la Influenza/genética , Vacunas Atenuadas , Infecciones por Orthomyxoviridae/prevención & control
3.
J Infect Chemother ; 30(6): 571-578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38036028

RESUMEN

INTRODUCTION: The prevalence and infection of the Zika virus (ZIKV) have recently posed a major threat to global public health security. However, there is currently a lack of specific vaccines and effective antiviral drugs for ZIKV infection. METHODS: Theaflavins TF1 and TF2 were selected by evaluating the anti-Zika virus activity of four kinds of theaflavins in vitro. Subsequently, in vivo, we investigated the effects of TF1 and TF2 on weight, survival, tissue viral load, and cytokines in ZIKV-infected mice. RESULTS: We compared the anti-ZIKV activity of four theaflavins (TFs) in cells and found that TF1 and TF2b significantly inhibited the replication of ZIKV/Z16006 toxic strain in BHK and Vero cells by inhibiting the replication and release of ZIKV, while no similar effects were observed for TF2a and TF3. In vivo assay, we only found that TF2b improved the survival rate of infected mice. In tissues of ZIKV-infected mice, the viral load was higher in spleen and blood, followed by liver, epididymis, and testis, the lowest in muscle. Additionally, TF2b treatment significantly reduced the expression of cytokines (IL-6, IL-1ß, TNF-α) and chemokines (CCL2, CCL5, CXCL10) induced by ZIKV infection. CONCLUSIONS: These findings suggest that TF2b has a potent antiviral effect and can be used as a potential candidate for the treatment of ZIKV infection.

4.
Int Ophthalmol ; 44(1): 233, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886282

RESUMEN

PURPOSE: Intraocular irrigating solution is extensively applied in cataract surgery. This paper explored the difference and relationship between optical coherence tomography (OCT) and optical quality analysis system (OQAS) parameters induced by compound electrolyte intraocular irrigating solution (CEIIS) or Ringer lactate (RL) solution during uncomplicated cataract surgery. METHODS: Totally 200 senior cataract patients were randomly divided into the CEIIS and RL groups (N = 100 patients/group). The anterior chamber was irrigated by CEIIS or RL during phacoemulsification. Patients were subdivided into diabetes mellitus (DM)+ and DM- groups. The central macular thickness (CMT), hyper reflective foci (HF), modulation transfer function cutoff frequency (MTF cutoff), Strehl ratio (SR), objective scatter index (OSI), and OQAS values (OVs) at 100%, 20%, and 9% contrast levels were measured preoperatively and 1 day and 1 week after operation using spectral-domain optical coherence tomography and OQAS II, respectively. Best-corrected visual acuity (BCVA) was assessed using the Snellen scale, followed by statistical analysis of its logarithm of the minimal angle of resolution. RESULTS: There were no significant differences in clinical characteristics between the CEIIS and RL groups. Both groups exhibited notably increased postoperative CMT, MTF cutoff, SR, OV at 100%, 20%, and 9% contrast levels, and reduced OSI, indicating CEIIS and RL improved postoperative visual quality. CEIIS surpassed RL solution in improving postoperative visual quality, decelerating the increase of macular HF numbers and CMT in DM+ patients and postoperative BCVA. There was no difference between CEIIS and RL in long-term vision improvement. CONCLUSION: CEIIS surpasses RL in postoperative visual recovery and retards increases of macular HF numbers and CMT in senior DM+ cataract patients.


Asunto(s)
Facoemulsificación , Lactato de Ringer , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Femenino , Masculino , Anciano , Tomografía de Coherencia Óptica/métodos , Lactato de Ringer/administración & dosificación , Facoemulsificación/métodos , Persona de Mediana Edad , Irrigación Terapéutica/métodos , Electrólitos/administración & dosificación , Recuperación de la Función , Catarata/complicaciones , Estudios Prospectivos , Soluciones Oftálmicas/administración & dosificación
5.
Virol J ; 20(1): 75, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081549

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes non-symptomatic infection, mild influenza-like symptoms to pneumonia, severe acute respiratory distress syndrome, and even death, reflecting different clinical symptoms of viral infection. However, the mechanism of its pathogenicity remains unclear. Host-specific traits have a breakthrough significance for studying the pathogenicity of SARS-CoV-2. We previously reported SARS-CoV-2/BMA8, a mouse-adapted strain, was lethal to aged BALB/c mice but not to aged C57BL/6N mice. Here, we further investigate the differences in pathogenicity of BMA8 strain against wild-type aged C57BL/6N and BALB/c mice. METHODS: Whole blood and tissues were collected from mice before and after BMA8 strain infection. Viral replication and infectivity were assessed by detection of viral RNA copies and viral titers; the degree of inflammation in mice was tested by whole blood cell count, ELISA and RT-qPCR assays; the pathogenicity of SARS-CoV-2/BMA8 in mice was measured by Histopathology and Immunohistochemistry; and the immune level of mice was evaluated by flow cytometry to detect the number of CD8+ T cells. RESULTS: Our results suggest that SARS-CoV-2/BMA8 strain caused lower pathogenicity and inflammation level in C57BL/6N mice than in BALB/c mice. Interestingly, BALB/c mice whose MHC class I haplotype is H-2Kd showed more severe pathogenicity after infection with BMA8 strain, while blockade of H-2Kb in C57BL/6N mice was also able to cause this phenomenon. Furthermore, H-2Kb inhibition increased the expression of cytokines/chemokines and accelerated the decrease of CD8+ T cells caused by SARS-CoV-2/BMA8 infection. CONCLUSIONS: Taken together, our work shows that host MHC molecules play a crucial role in the pathogenicity differences of SARS-CoV-2/BMA8 infection. This provides a more profound insight into the pathogenesis of SARS-CoV-2, and contributes enlightenment and guidance for controlling the virus spread.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Linfocitos T CD8-positivos , Virulencia , COVID-19/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Inflamación , Pulmón/patología , Modelos Animales de Enfermedad
6.
Environ Sci Technol ; 57(4): 1670-1679, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36653896

RESUMEN

Perfluoroalkyl substances (PFASs) are widely present in agricultural soils, but their sources and fate in greenhouse soils remain unclear. In this study, the sources, fractionation, and migration of PFASs were compared in the greenhouse and open-field soils of the Fen-Wei Plain, China. The total concentrations of PFASs (Σ17PFAS) were comparable in the greenhouse and open-field soils but with different profiles. Detrended correspondence and correlation analyses indicated that dry deposition was an important source of PFASs in the open-field soils, whereas surface water had a notable contribution to the greenhouse soils due to more frequent irrigation. The PFASs in the soils were mainly present in water-soluble fraction (F1). The F1 proportions of short-chain and long-chain PFASs were negatively correlated with the anion exchange capacity (AEC) and organic carbon content (foc) in soil, respectively, with that of short-chain PFASs being higher than long-chain ones. The AEC was significantly higher while foc was lower in the greenhouse soil than the open-field soil, leading to lower proportions of F1 for short-chain PFASs while higher for long-chain ones in the greenhouse soil. Frequent irrigation and elevated temperatures promoted the migration of PFASs in greenhouse soil; thus, the Σ17PFAS and F1 exhibited an increasing trend with soil depth.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Suelo , Monitoreo del Ambiente , Agricultura , Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
7.
Environ Sci Technol ; 57(23): 8739-8749, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252902

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have potential to accumulate in crops and pose health risks to humans, but it is unclear how the widely present organic matters in soil, such as humic acid (HA), affect their uptake and translocation in plants. In this study, hydroponic experiments were conducted to systematically disclose the impacts of HA on the uptake, translocation, and transmembrane transport at the subcellular level of four PFASs, including perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate in wheat (Triticum aestivum L.). The results of the uptake and depuration experiments indicated that HA depressed the adsorption and absorption of PFASs in wheat roots by reducing the bioavailability of PFASs, and HA did not affect the long-range transport of PFASs to be eliminated via the phloem of wheat. However, HA facilitated their transmembrane transport in wheat roots, while the contrary effect was observed in the shoots. The inhibitor experiments coupled with transcriptomics analysis uncover that the increased transmembrane transport of PFASs stimulated by HA is mainly driven by the slow-type anion channel pathways interacting with Ca2+-dependent protein kinases (Ca2+-CDPK-SLAC1). The promoted transmembrane transport of PFASs might cause adverse effects on the plant cell wall, which causes further concerns.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Sustancias Húmicas/análisis , Triticum , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Suelo , Alcanosulfonatos/análisis , Fluorocarburos/análisis , China
8.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834803

RESUMEN

Therapeutic antibodies-F(ab')2 obtained from hyperimmune equine plasma could treat emerging infectious diseases rapidly because of their high neutralization activity and high output. However, the small-sized F(ab')2 is rapidly eliminated by blood circulation. This study explored PEGylation strategies to maximize the half-life of equine anti-SARS-CoV-2 specific F(ab')2. Equine anti-SARS-CoV-2 specific F(ab')2 were combined with 10 KDa MAL-PEG-MAL in optimum conditions. Specifically, there were two strategies: Fab-PEG and Fab-PEG-Fab, F(ab')2 bind to a PEG or two PEG, respectively. A single ion exchange chromatography step accomplished the purification of the products. Finally, the affinity and neutralizing activity was evaluated by ELISA and pseudovirus neutralization assay, and ELISA detected the pharmacokinetic parameters. The results displayed that equine anti-SARS-CoV-2 specific F(ab')2 has high specificity. Furthermore, PEGylation F(ab')2-Fab-PEG-Fab had a longer half-life than specific F(ab')2. The serum half-life of Fab-PEG-Fab, Fab-PEG, and specific F(ab')2 were 71.41 h, 26.73 h, and 38.32 h, respectively. The half-life of Fab-PEG-Fab was approximately two times as long as the specific F(ab')2. Thus far, PEGylated F(ab')2 has been prepared with high safety, high specificity, and a longer half-life, which could be used as a potential treatment for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Caballos , SARS-CoV-2/metabolismo , Semivida , Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Fragmentos Fab de Inmunoglobulinas
9.
J Environ Manage ; 325(Pt B): 116638, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335698

RESUMEN

Feces in livestock farms is a reservoir of antibiotic resistance genes (ARGs), which can disseminate into surrounding soil and air, bringing risks to human health. In this study, seasonal dissemination of ARGs in a livestock farm and implications for human exposure was explored. The experimental results showed that ARGs abundance basically ranked as feces > soil > air, and significant seasonal dependence was observed. The total ARGs in pig feces was relatively higher in autumn (109.7 copies g-1) and winter (1010.0 copies g-1), and lower in summer (105.0 copies g-1). Similarly, the lowest total ARGs in soil and air were also observed in summer. There were correlations among ARGs, integron intI1, and bacterial community. Total organic carbon was an important factor affecting ARGs distribution in the feces, and pH and moisture content significantly affected soil ARGs. The daily intakes of integron intI1 and ARGs from air were 10°.5 copies h-1 and 102.3 copies h-1 for human exposure, respectively. Pseudomonas was a potential pathogenic host of blaTEM-1 in feces, Pseudomonas and Acinetobacter were potential pathogenic hosts of multiple ARGs in soil, while ARGs in air did not migrate into pathogens.


Asunto(s)
Antibacterianos , Ganado , Humanos , Porcinos , Animales , Granjas , Suelo , Genes Bacterianos , Estaciones del Año , Bacterias/genética
10.
Int Wound J ; 20(10): 4130-4137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37519132

RESUMEN

A barbed suture has been demonstrated to be effective in shortening the stitching time and improving the aesthetic appearance of the stitches during the entire knee replacement. However, no meta-analyses have been conducted specifically to evaluate the effect of the barbed thread on wound complications relative to the conventional suture. A comprehensive search of the PubMed database, the Embase database, the Cochrane Library and the Web of Science was performed to obtain search data up to June 2023, and only randomised controlled trials were included in this meta-analysis. We used Review Manager 5.3 for data synthesis and analysis. This meta-analysis included eight studies. It was found that the use of barbed sutures did not improve the incidence of the disease, the infection of the wound, the closure of the abscess and the injury. However, because of the limited sample size of the randomised controlled trials for this meta-analysis, the data should be handled with caution. More high-quality, large-sample studies will be required to confirm the results.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Técnicas de Sutura , Suturas , Bases de Datos Factuales , Tempo Operativo , Resultado del Tratamiento
11.
J Virol ; 95(18): e0060021, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34106002

RESUMEN

Coronaviruses are commonly characterized by a unique discontinuous RNA transcriptional synthesis strategy guided by transcription-regulating sequences (TRSs). However, the details of RNA synthesis in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been fully elucidated. Here, we present a time-scaled, gene-comparable transcriptome of SARS-CoV-2, demonstrating that ACGAAC functions as a core TRS guiding the discontinuous RNA synthesis of SARS-CoV-2 from a holistic perspective. During infection, viral transcription, rather than genome replication, dominates all viral RNA synthesis activities. The most highly expressed viral gene is the nucleocapsid gene, followed by ORF7 and ORF3 genes, while the envelope gene shows the lowest expression. Host transcription dysregulation keeps exacerbating after viral RNA synthesis reaches a maximum. The most enriched host pathways are metabolism related. Two of them (cholesterol and valine metabolism) affect viral replication in reverse. Furthermore, the activation of numerous cytokines emerges before large-scale viral RNA synthesis. IMPORTANCE SARS-CoV-2 is responsible for the current severe global health emergency that began at the end of 2019. Although the universal transcriptional strategies of coronaviruses are preliminarily understood, the details of RNA synthesis, especially the time-matched transcription level of each SARS-CoV-2 gene and the principles of subgenomic mRNA synthesis, are not clear. The coterminal subgenomic mRNAs of SARS-CoV-2 present obstacles in identifying the expression of most genes by PCR-based methods, which are exacerbated by the lack of related antibodies. Moreover, SARS-CoV-2-related metabolic imbalance and cytokine storm are receiving increasing attention from both clinical and mechanistic perspectives. Our transcriptomic research provides information on both viral RNA synthesis and host responses, in which the transcription-regulating sequences and transcription levels of viral genes are demonstrated, and the metabolic dysregulation and cytokine levels identified at the host cellular level support the development of novel medical treatment strategies.


Asunto(s)
COVID-19/genética , Células Epiteliales/metabolismo , Pulmón/metabolismo , ARN Mensajero/genética , SARS-CoV-2/aislamiento & purificación , Transcriptoma , Animales , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Pulmón/virología , ARN Mensajero/metabolismo , Células Vero , Replicación Viral
12.
Opt Express ; 30(21): 37980-37992, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258390

RESUMEN

We have proposed generalized temporal coupled-mode theory for P T-symmetric optical resonator, and on this basis we have explained the Fano resonance in P T-symmetric photonic heterostructure. Our theoretical predictions agree very well with the simulated results obtained by transfer matrix method, which confirms the correctness of our theory. Compared with conventional Fano resonance in optical resonator with time-reversal symmetry, in this Fano resonance the amplitudes of scattering coefficients can be tuned in much larger range, which can be much larger than one, and tend to infinity at singular scattering point, where the rates of dissipation and accumulation are equal to each other and the difference of the phases of the coupling coefficients between output fields and resonant mode is equal to ±π/2. Not only that, the quality factor Q here can be negative out of accumulation, and approaches infinity at this singular scattering point. The phases of reflections jump π in the vicinity of the minima of corresponding amplitudes. We believe that we open a new door to study Fano resonance in non-Hermitian optics and inspire relevant study in other non-Hermitian wave systems.

13.
Environ Sci Technol ; 56(22): 15617-15626, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36272151

RESUMEN

Dissolved organic matter (DOM) such as fulvic acid (FA) and humic acid (HA) in soil considerably affects the fate of per- and polyfluoroalkyl substances (PFASs). However, the effect of DOM on their behavior in plants remains unclear. Herein, hydroponic experiments indicate that FA and HA reduce the accumulation of an emerging PFAS of high concern, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in wheat roots by reducing its bioavailability in the solution. Nevertheless, FA with low molecular weight (MW) promotes its absorption and translocation from the roots to the shoots by stimulating the activity and the related genes of the plasma membrane H+-ATPase, whereas high-MW HA shows the opposite effect. Moreover, in vivo and in vitro experiments indicate that 6:2 Cl-PFESA undergoes reductive dechlorination, which is regulated mainly using nitrate reductase and glutathione transferase. HA and FA, particularly the latter, promote the dechlorination of 6:2 Cl-PFESA in wheat by enhancing electron transfer efficiency and superoxide production. Transcriptomic analysis indicates that FA also stimulates catalytic activity, cation binding, and oxidoreductase activity, facilitating 6:2 Cl-PFESA transformation in wheat.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Éter , Triticum , Materia Orgánica Disuelta , Peso Molecular , Éteres , Alcanosulfonatos , Sustancias Húmicas
14.
Environ Sci Technol ; 56(13): 9806-9815, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723552

RESUMEN

Birnessite (δ-MnO2) is a layered manganese oxide widely present in the environment and actively participates in the transformation of natural organic matter (NOM) in biogeochemical processes. However, the effect of oxygen on the dynamic interface processes of NOM and δ-MnO2 remains unclear. This study systematically investigated the interactions between δ-MnO2 and fulvic acid (FA) under both aerobic and anaerobic conditions. FA was transformed by δ-MnO2 via direct electron transfer and the generated reactive oxygen species (ROS). During the 32-day reaction, 79.8% of total organic carbon (TOC) in solution was removed under anaerobic conditions, unexpectedly higher than that under aerobic conditions (69.8%), suggesting that oxygen limitation was more conducive to the oxidative transformation of FA by δ-MnO2. The oxygen vacancies (OV) on the surface of δ-MnO2 were more exposed under anaerobic conditions, thus promoting the adsorption and transformation of FA as well as regeneration of the active sites. Additionally, the reaction of FA with δ-MnO2 weakened the strongly bonded lattice oxygen (Olatt), and the released Olatt was an important source of ROS. Interestingly, a part of organic carbon (OC) was preserved by forming MnCO3, which might be a novel mechanism for carbon preservation. These findings contribute to an improved understanding of the dynamic interface processes between MnO2 and NOM and provide new insights into the effects of oxygen limitation on the cycling and preservation of OC.


Asunto(s)
Compuestos de Manganeso , Óxidos , Carbono , Dominio Catalítico , Compuestos de Manganeso/química , Óxidos/química , Oxígeno/química , Especies Reactivas de Oxígeno
15.
Environ Sci Technol ; 56(2): 779-789, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34964354

RESUMEN

Nitrogen-containing microplastics (N-MPs) are widely present in the atmosphere, but their potential health risks have been overlooked. In this study, the formation of persistent aminoxyl radicals (PAORs) and reactive nitrogen species (RNSs) on the N-MPs under light irradiation was investigated. After photoaging, an anisotropic triplet with the g-factor of ∼2.0044, corresponding to PAORs, was detected on the nonaromatic polyamide (PA) rather than amino resin (AmR) by electron paramagnetic resonance and confirmed by density functional theory calculations. The generated amine oxide portions on the photoaged PA were identified using X-ray photoelectron spectroscopy and Raman spectroscopy, which were considered to be the main structural basis/precursors of a PAOR. Surprisingly, RNSs were also observed on the irradiated PA. The generated ·NO due to the aphotolysis of nitrone groups simultaneously reacted with peroxide radicals and O2·- to yield ·NO2 and peroxynitrite, respectively, which were responsible for peroxyacyl nitrates (PAN) and CO3·- formation. Besides, a significantly higher oxidative potential and reductive potential were observed for the aged PA than AmR, which is assigned to the abundant RNSs, organic hydroperoxides and PANs, and a strong ability to transfer electrons from PAOR, respectively. This work provides important information for the potential risks of airborne N-MPs and may serve as a guide for future toxicological assessments.


Asunto(s)
Microplásticos , Plásticos , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Nitrógeno , Especies de Nitrógeno Reactivo
16.
J Environ Manage ; 324: 116431, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352721

RESUMEN

Cr(VI) is a class of highly toxic heavy metals. In this study, alkali-modified g-C3N4 (cOH-CN) and acid-modified g-C3N4 (cH-CN) materials were successfully synthesized, and their photocatalytic activities for Cr(VI) reduction under visible light irradiation were tested. Owing to defect structures by cH-CN and -OH group introduction by cOH-CN, the modified materials exhibited a larger surface area, more abundant pore structures, a wider visible light absorption range, higher energy gap values, and a stronger capacity for electron-hole pair separation. As a result, satisfactory Cr(VI) reduction performance was gained by these two photocatalysts. Almost all Cr(VI) was converted to Cr(III) after 60 min of treatment in the presence of these two catalysts, while it was only 30% for the pristine g-C3N4 materials. Relatively higher dosages of cH-CN and cOH-CN and acidic conditions both improved Cr(VI) reduction in the cH-CN and cOH-CN photocatalytic systems. Cr(VI) reduction was mainly initiated by free electrons in the photocatalytic system of the modified materials. Finally, Cr(VI) in the photocatalytic system was almost completely converted to Cr(III). Furthermore, the stability and recycling of the cH-CN and cOH-CN catalysts were evaluated.


Asunto(s)
Cromo , Luz , Cromo/química , Catálisis , Electrones
17.
Emerg Infect Dis ; 27(7): 1979-1981, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152969

RESUMEN

We analyzed size of severe acute respiratory coronavirus 2 (SARS-CoV-2) aerosol particles shed by experimentally infected cynomolgus monkeys. Most exhaled particles were small, and virus was mainly released early during infection. By postinfection day 6, no virus was detected in breath, but air in the isolator contained large quantities of aerosolized virus.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Aerosoles , Animales , Humanos , Macaca fascicularis , SARS-CoV-2
18.
Cancer Cell Int ; 21(1): 295, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098945

RESUMEN

As the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and ß-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.

19.
Virol J ; 18(1): 230, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809668

RESUMEN

BACKGROUND: In 2011, a new influenza virus, named Influenza D Virus (IDV), was isolated from pigs, and then cattle, presenting influenza-like symptoms. IDV is one of the causative agents of Bovine Respiratory Disease (BRD), which causes high morbidity and mortality in feedlot cattle worldwide. To date, the molecular mechanisms of IDV pathogenicity are unknown. Recent IDV outbreaks in cattle, along with serological and genetic evidence of IDV infection in humans, have raised concerns regarding the zoonotic potential of this virus. Influenza virus polymerase is a determining factor of viral pathogenicity to mammals. METHODS: Here we take a prospective approach to this question by creating a random mutation library about PB2 subunit of the IDV viral polymerase to test which amino acid point mutations will increase viral polymerase activity, leading to increased pathogenicity of the virus. RESULTS: Our work shows some exact sites that could affect polymerase activities in influenza D viruses. For example, two single-site mutations, PB2-D533S and PB2-G603Y, can independently increase polymerase activity. The PB2-D533S mutation alone can increase the polymerase activity by 9.92 times, while the PB2-G603Y mutation increments the activity by 8.22 times. CONCLUSION: Taken together, our findings provide important insight into IDV replication fitness mediated by the PB2 protein, increasing our understanding of IDV replication and pathogenicity and facilitating future studies.


Asunto(s)
Infecciones por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Aminoácidos/genética , Animales , Bovinos , Mutación , Porcinos , Thogotovirus/genética , Replicación Viral
20.
BMC Vet Res ; 17(1): 172, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892731

RESUMEN

BACKGROUND: Canine distemper virus (CDV) is an enveloped negative-strand RNA virus that exhibits a high mutation rate and continuously expands the range of hosts. Notably, CDV has infected giant panda with spill over from viral reservoirs in canines. Giant pandas (Ailuropoda melanoleuca), especially captive pandas, are known to be susceptible to natural infection with CDV. The high fatality rate of CDV poses a serious threat to the safety of the giant panda population. However, vaccines or drugs for canine distemper in giant pandas have not been developed to date. Therefore, a rapid test that can achieve accurate onsite detection of CDV is important to enable the timely implementation of control measures. In this study, we established a nucleic acid visualization assay for targeting the CDV N gene by using combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). RESULTS: The RT-RPA-VF assay does not require sophisticated equipment, and it was determined to provide rapid detection at 35 °C for 30 min, while the limit of detection was 5 × 101 copies/µl RNA transcripts and 100.5 TCID50 ml- 1 viruses. The results showed that the assay was high specific to CDV and had no cross-reactivity with other viruses infecting the giant panda. Compared with RT-qPCR, RT-RPA-VF assay had a sensitivity of 100% and a specificity of 100% in 29 clinical samples. The coincidence rate between RT-RPA-VF and RT-qPCR was 100% (kappa = 1), indicating that the RT-RPA-VF assay possessed good diagnostic performance on clinical samples. CONCLUSIONS: The RT-RPA-VF provides a novel alternative for the simple, sensitive, and specific identification of CDV and showed great potential for point of care diagnostics for captive and wild giant panda.


Asunto(s)
Virus del Moquillo Canino/genética , Virus del Moquillo Canino/aislamiento & purificación , Moquillo/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Ursidae/virología , Animales , Moquillo/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Transcripción Reversa , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA