Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807322

RESUMEN

Puerarin (daidzein-8-C-glucoside) is an isoflavone isolated from several leguminous plants of the genus Pueraria. Puerarin possesses several pharmacological properties; however, the poor solubility of puerarin limits its applications. To resolve this poor solubility, Deinococcus geothermalis amylosucrase (DgAS) was used to modify puerarin into more soluble derivatives. The results showed that DgAS could biotransform puerarin into a novel compound: puerarin-4'-O-α-glucoside. The biotransformation reaction was manipulated at different temperatures, pH values, sucrose concentrations, reaction times, and enzyme concentrations. The results showed that the optimal reaction condition was biotransformed by 200 µg/mL DgAS with 20% (w/v) sucrose at pH 6 and incubated at 40 °C for 48 h, and the optimal production yield was 35.1%. Puerarin-4'-O-α-glucoside showed 129-fold higher solubility than that of puerarin and, thus, could be further applied for pharmacological use in the future.


Asunto(s)
Glucósidos , Isoflavonas , Proteínas Bacterianas/metabolismo , Deinococcus , Glucósidos/química , Glucosiltransferasas , Isoflavonas/química , Sacarosa/metabolismo
2.
Mol Biol Evol ; 37(2): 455-468, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589316

RESUMEN

Ribosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78-80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.


Asunto(s)
Hongos/metabolismo , Duplicación de Gen , Proteínas Ribosómicas/genética , Evolución Molecular , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/genética , Conversión Génica , Dosificación de Gen , Filogenia , Especificidad de la Especie
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575908

RESUMEN

Ganoderma lucidum is a medicinal fungus abundant in triterpenoids, its primary bioactive components. Although numerous Ganoderma triterpenoids have already been identified, rare Ganoderma triterpenoid saponins were recently discovered. To create novel Ganoderma saponins, ganoderic acid G (GAG) was selected for biotransformation using four Bacillus glycosyltransferases (GTs) including BtGT_16345 from the Bacillus thuringiensis GA A07 strain and three GTs (BsGT110, BsUGT398, and BsUGT489) from the Bacillus subtilis ATCC 6633 strain. The results showed that BsUGT489 catalyzed the glycosylation of GAG to GAG-3-o-ß-glucoside, while BsGT110 catalyzed the glycosylation of GAG to GAG-26-o-ß-glucoside, which showed 54-fold and 97-fold greater aqueous solubility than that of GAG, respectively. To our knowledge, these two GAG saponins are new compounds. The glycosylation specificity of the four Bacillus GTs highlights the possibility of novel Ganoderma triterpenoid saponin production in the future.


Asunto(s)
Bacillus/metabolismo , Glicosiltransferasas/metabolismo , Triterpenos/metabolismo , Proteínas Bacterianas , Biotransformación , Catálisis , Cromatografía Líquida de Alta Presión , Glicosilación , Estructura Molecular , Solubilidad , Triterpenos/química
4.
Molecules ; 26(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34684855

RESUMEN

Vitexin is a C-glucoside flavone that exhibits a wide range of pharmaceutical activities. However, the poor solubility of vitexin limits its applications. To resolve this limitation, two glycoside hydrolases (GHs) and four glycosyltransferases (GTs) were assayed for glycosylation activity toward vitexin. The results showed that BtGT_16345 from the Bacillus thuringiensis GA A07 strain possessed the highest glycosylation activity, catalyzing the conversion of vitexin into new compounds, vitexin-4'-O-ß-glucoside (1) and vitexin-5-O-ß-glucoside (2), which showed greater aqueous solubility than vitexin. To our knowledge, this is the first report of vitexin glycosylation. Based on the multiple bioactivities of vitexin, the two highly soluble vitexin derivatives might have high potential for pharmacological usage in the future.


Asunto(s)
Apigenina/metabolismo , Glucósidos/metabolismo , Bacillus thuringiensis/metabolismo , Catálisis , Flavonas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Isoflavonas/metabolismo , Solubilidad
5.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635144

RESUMEN

Strain GA A07 was identified as an intestinal Bacillus bacterium of zebrafish, which has high efficiency to biotransform the triterpenoid, ganoderic acid A (GAA), into GAA-15-O-ß-glucoside. To date, only two known enzymes (BsUGT398 and BsUGT489) of Bacillus subtilis ATCC 6633 strain can biotransform GAA. It is thus worthwhile to identify the responsible genes of strain GA A07 by whole genome sequencing. A complete genome of strain GA A07 was successfully assembled. A phylogenomic analysis revealed the species of the GA A07 strain to be Bacillus thuringiensis. Forty glycosyltransferase (GT) family genes were identified from the complete genome, among which three genes (FQZ25_16345, FQZ25_19840, and FQZ25_19010) were closely related to BsUGT398 and BsUGT489. Two of the three candidate genes, FQZ25_16345 and FQZ25_19010, were successfully cloned and expressed in a soluble form in Escherichia coli, and the corresponding proteins, BtGT_16345 and BtGT_19010, were purified for a biotransformation activity assay. An ultra-performance liquid chromatographic analysis further confirmed that only the purified BtGT_16345 had the key biotransformation activity of catalyzing GAA into GAA-15-O-ß-glucoside. The suitable conditions for this enzyme activity were pH 7.5, 10 mM of magnesium ions, and 30 °C. In addition, BtGT_16345 showed glycosylation activity toward seven flavonoids (apigenein, quercetein, naringenein, resveratrol, genistein, daidzein, and 8-hydroxydaidzein) and two triterpenoids (GAA and antcin K). A kinetic study showed that the catalytic efficiency (kcat/KM) of BtGT_16345 was not significantly different compared with either BsUGT398 or BsUGT489. In short, this study identified BtGT_16345 from B. thuringiensis GA A07 is the catalytic enzyme responsible for the 15-O-glycosylation of GAA and it was also regioselective toward triterpenoid substrates.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Glicosiltransferasas/metabolismo , Ácidos Heptanoicos/química , Ácidos Heptanoicos/metabolismo , Lanosterol/análogos & derivados , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Biotransformación , Catálisis , Glicosilación , Glicosiltransferasas/genética , Lanosterol/química , Lanosterol/metabolismo , Filogenia , Especificidad por Sustrato , Secuenciación Completa del Genoma
6.
Molecules ; 24(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554155

RESUMEN

Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-ß-glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-ß-glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-ß-glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (kcat) of BsGT110 toward GAA at pH 6 (kcat = 11.2 min-1) was 3-fold higher than that at pH 7 (kcat = 3.8 min-1), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids.


Asunto(s)
Bacillus subtilis/enzimología , Glucósidos/biosíntesis , Glicosiltransferasas/metabolismo , Ácidos Heptanoicos/metabolismo , Lanosterol/análogos & derivados , Proteínas Recombinantes , Triterpenos/metabolismo , Secuencia de Aminoácidos , Biotransformación , Catálisis , Cromatografía Líquida de Alta Presión , Glucósidos/química , Glicosilación , Ácidos Heptanoicos/química , Cinética , Lanosterol/química , Lanosterol/metabolismo , Triterpenos/química
7.
Molecules ; 24(12)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208027

RESUMEN

8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.


Asunto(s)
Antiinflamatorios/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Glucósidos/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Isoflavonas/biosíntesis , Antiinflamatorios/química , Antiinflamatorios/farmacología , Biotransformación , Estabilidad de Medicamentos , Fermentación , Vectores Genéticos , Glucósidos/química , Glucósidos/farmacología , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacología , Estructura Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Solubilidad
8.
Int J Mol Sci ; 19(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400606

RESUMEN

Bacillus subtilis ATCC (American type culture collection) 6633 was found to biotransform ganoderic acid A (GAA), which is a major lanostane triterpenoid from the medicinal fungus Ganoderma lucidum. Five glycosyltransferase family 1 (GT1) genes of this bacterium, including two uridine diphosphate-dependent glycosyltransferase (UGT) genes, BsUGT398 and BsUGT489, were cloned and overexpressed in Escherichia coli. Ultra-performance liquid chromatography confirmed the two purified UGT proteins biotransform ganoderic acid A into a metabolite, while the other three purified GT1 proteins cannot biotransform GAA. The optimal enzyme activities of BsUGT398 and BsUGT489 were at pH 8.0 with 10 mM of magnesium or calcium ion. In addition, no candidates showed biotransformation activity toward antcin K, which is a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea. One biotransformed metabolite from each BsUGT enzyme was then isolated with preparative high-performance liquid chromatography. The isolated metabolite from each BsUGT was identified as ganoderic acid A-15-O-ß-glucoside by mass and nuclear magnetic resonance spectroscopy. The two BsUGTs in the present study are the first identified enzymes that catalyze the 15-O-glycosylation of triterpenoids.


Asunto(s)
Bacillus subtilis/enzimología , Biocatálisis , Glicosiltransferasas/metabolismo , Ácidos Heptanoicos/metabolismo , Lanosterol/análogos & derivados , Uridina Difosfato/metabolismo , Biotransformación , Glicosilación , Ácidos Heptanoicos/química , Concentración de Iones de Hidrógeno , Iones , Lanosterol/química , Lanosterol/metabolismo , Metales/farmacología , Filogenia , Temperatura
9.
Molecules ; 23(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217066

RESUMEN

Functional bacteria that could biotransform triterpenoids may exist in the diverse microflora of fish intestines. Ganoderic acid A (GAA) is a major triterpenoid from the medicinal fungus Ganoderma lucidum. In studying the microbial biotransformation of GAA, dozens of intestinal bacteria were isolated from the excreta of zebrafish. The bacteria's ability to catalyze GAA were determined using ultra-performance liquid chromatography analysis. One positive strain, GA A07, was selected for functional studies. GA A07 was confirmed as Bacillus sp., based on the DNA sequences of the 16S rRNA gene. The biotransformed metabolite was purified with the preparative high-performance liquid chromatography method and identified as GAA-15-O-ß-glucoside, based on the mass and nuclear magnetic resonance spectral data. The present study is the first to report the glycosylation of Ganoderma triterpenoids. Moreover, 15-O-glycosylation is a new microbial biotransformation of triterpenoids, and the biotransformed metabolite, GAA-15-O-ß-glucoside, is a new compound.


Asunto(s)
Bacterias/clasificación , Triterpenos/química , Pez Cebra/microbiología , Animales , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Microbioma Gastrointestinal , Glicosilación , Filogenia , ARN Ribosómico 16S/genética
10.
Mol Biol Evol ; 33(11): 2769-2780, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27501942

RESUMEN

Feathers, which are mainly composed of α- and ß-keratins, are highly diversified, largely owing to duplication and diversification of ß-keratin genes during bird evolution. However, little is known about the regulatory changes that contributed to the expressional diversification of ß-keratin genes. To address this issue, we studied transcriptomes from five different parts of chicken contour and flight feathers. From these transcriptomes we inferred ß-keratin enriched co-expression modules of genes and predicted transcription factors (TFs) of ß-keratin genes. In total, we predicted 262 TF-target gene relationships in which 56 TFs regulate 91 ß-keratin genes; we validated 14 of them by in vitro tests. A dual criterion of TF enrichment and "TF-target gene" expression correlation identified 26 TFs as the major regulators of ß-keratin genes. According to our predictions, the ancestral scale and claw ß-keratin genes have common and unique regulators, whereas most feather ß-keratin genes show chromosome-wise regulation, distinct from scale and claw ß-keratin genes. Thus, after expansion from the ß-keratin gene on Chr7 to other chromosomes, which still shares a TF with scale and claw ß-keratin genes, most feather ß-keratin genes have recruited distinct or chromosome-specific regulators. Moreover, our data showed correlated gene expression profiles, positive or negative, between predicted TFs and their target genes over the five studied feather regions. Therefore, regulatory divergences among feather ß-keratin genes have contributed to structural differences among different parts of feathers. Our study sheds light on how feather ß-keratin genes have diverged in regulation from scale and claw ß-keratin genes and among themselves.


Asunto(s)
Pollos/genética , Plumas/fisiología , Regulación de la Expresión Génica/genética , beta-Queratinas/genética , Animales , Evolución Biológica , Evolución Molecular , Plumas/metabolismo , Variación Genética , Familia de Multigenes , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , beta-Queratinas/metabolismo
11.
Mol Biol Evol ; 30(9): 2121-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793114

RESUMEN

Gene expression evolution can be caused by changes in cis- or trans-regulatory elements or both. As cis and trans regulation operate through different molecular mechanisms, cis and trans mutations may show different inheritance patterns and may be subjected to different selective constraints. To investigate these issues, we obtained and analyzed gene expression data from two Saccharomyces cerevisiae strains and their hybrid, using high-throughput sequencing. Our data indicate that compared with other types of genes, those with antagonistic cis-trans interactions are more likely to exhibit over- or underdominant inheritance of expression level. Moreover, in accordance with previous studies, genes with trans variants tend to have a dominant inheritance pattern, whereas cis variants are enriched for additive inheritance. In addition, cis regulatory differences contribute more to expression differences between species than within species, whereas trans regulatory differences show a stronger association between divergence and polymorphism. Our data indicate that in the trans component of gene expression differences genes subjected to weaker selective constraints tend to have an excess of polymorphism over divergence compared with those subjected to stronger selective constraints. In contrast, in the cis component, this difference between genes under stronger and weaker selective constraint is mostly absent. To explain these observations, we propose that purifying selection more strongly shapes trans changes than cis changes and that positive selection may have significantly contributed to cis regulatory divergence.


Asunto(s)
Quimera/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Patrón de Herencia , Saccharomyces cerevisiae/genética , Selección Genética , Alelos , Bases de Datos Genéticas , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo Genético , Especificidad de la Especie
12.
Vision Res ; 222: 108447, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906036

RESUMEN

Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.

13.
Mol Ecol Resour ; 24(3): e13911, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38063371

RESUMEN

PCR-based high-throughput sequencing has permitted comprehensive resolution analyses of zooplankton diversity dynamics. However, significant methodological issues still surround analyses of complex bulk community samples, not least as in prevailing PCR-based approaches. Marine drifting animals-zooplankton-play essential ecological roles in the pelagic ecosystem, transferring energy and elements to higher trophic levels, such as fishes, cetaceans and others. In the present study, we collected 48 size-fractionated zooplankton samples in the vicinity of a coral reef island with environmental gradients. To investigate the spatiotemporal dynamics of zooplankton diversity patterns and the effect of PCR amplification biases across these complex communities, we first took metatranscriptomics approach. Comprehensive computational analyses revealed a clear pattern of higher/lower homogeneity in smaller/larger zooplankton compositions across samples respectively. Our study thus suggests changes in the role of dispersal across the sizes. Next, we applied in silico PCR to the metatranscriptomics datasets, in order to estimate the extent of PCR amplification bias. Irrespective of stringency criteria, we observed clear separations of size fraction sample clusters in both metatranscriptomics and in silico datasets. In contrast, the pattern-smaller-fractioned communities had higher compositional homogeneity than larger ones-was observed in the metatranscriptomics data but not in the in silico datasets. To investigate this discrepancy further, we analysed the mismatches of widely used mitochondrial CO1 primers and identified priming site mismatches likely driving PCR-based biases. Our results suggest the use of metatranscriptomics or, although less ideal, redesigning the CO1 primers is necessary to circumvent these issues.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Zooplancton/genética , Peces , Reacción en Cadena de la Polimerasa
14.
Genome Res ; 20(6): 826-36, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20445163

RESUMEN

Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and by trans factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we measure genome-wide allele-specific expression by deep sequencing to investigate the patterns of cis and trans expression variation between two strains of Saccharomyces cerevisiae. We propose a statistical modeling framework based on the binomial distribution that simultaneously addresses normalization of read counts derived from different parents and estimating the cis and trans expression variation parameters. We find that expression polymorphism in yeast is common for both cis and trans, though trans variation is more common. Constraint in expression evolution is correlated with other hallmarks of constraint, including gene essentiality, number of protein interaction partners, and constraint in amino acid substitution, indicating that both cis and trans polymorphism are clearly under purifying selection, though trans variation appears to be more sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our intraspecific variation suggests a significant departure from a neutral model of molecular evolution. A further examination of correlation between polymorphism and divergence within each category suggests that cis divergence is more frequently mediated by positive Darwinian selection than is trans divergence.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Selección Genética , ADN de Hongos/genética , Evolución Molecular , Genoma Fúngico , Polimorfismo de Nucleótido Simple
15.
BMC Biotechnol ; 13: 71, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24004614

RESUMEN

BACKGROUND: As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. RESULTS: Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. CONCLUSIONS: Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.


Asunto(s)
Celulasas/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Celulasas/genética , Celulosa/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Glicosilación , Mutagénesis Sitio-Dirigida , Phanerochaete/enzimología , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Plant Physiol ; 160(1): 165-77, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22829318

RESUMEN

To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.


Asunto(s)
Diferenciación Celular , Células del Mesófilo/citología , Haz Vascular de Plantas/citología , Transcriptoma , Zea mays/citología , Pared Celular/genética , Pared Celular/metabolismo , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Células del Mesófilo/metabolismo , Fotosíntesis , Células Vegetales/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/metabolismo , Plasmodesmos/genética , Plasmodesmos/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas , Protoplastos/citología , Protoplastos/metabolismo , ARN de Planta/análisis , ARN de Planta/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
Nucleic Acids Res ; 39(5): e28, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21131285

RESUMEN

A practical way to reduce the cost of surveying single-nucleotide polymorphism (SNP) in a large number of individuals is to measure the allele frequencies in pooled DNA samples. Pyrosequencing(TM) has been frequently used for this application because signals generated by this approach are proportional to the amount of DNA templates. The Pyrosequencing(TM) pyrogram is determined by the dispensing order of dNTPs, which is usually designed based on the known SNPs to avoid asynchronistic extensions of heterozygous sequences. Therefore, utilizing the pyrogram signals to identify de novo SNPs in DNA pools has never been undertook. Here, in this study we developed an algorithm to address this issue. With the sequence and pyrogram of the wild-type allele known in advance, we could use the pyrogram obtained from the pooled DNA sample to predict the sequence of the unknown mutant allele (de novo SNP) and estimate its allele frequency. Both computational simulation and experimental Pyrosequencing(TM) test results suggested that our method performs well. The web interface of our method is available at http://life.nctu.edu.tw/∼yslin/PSM/.


Asunto(s)
Algoritmos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Simulación por Computador , Difosfatos/análisis , Frecuencia de los Genes
18.
J Biosci Bioeng ; 135(5): 402-410, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889998

RESUMEN

Ganoderma sp. contains high amounts of diverse triterpenoids; however, few triterpenoid saponins could be isolated from the medicinal fungus. To produce novel Ganoderma triterpenoid saponins, biotransformation-guided purification (BGP) process was applied to a commercial Ganoderma extract. The commercial Ganoderma extract was partially separated into three fractions by preparative high-performance liquid chromatography, and the separated fractions were then directly biotransformed by a Bacillus glycosyltransferase (BsUGT489). One of the biotransformed products could be further purified and identified as a novel saponin: ganoderic acid C2 (GAC2)-3-O-ß-glucoside by nucleic magnetic resonance (NMR) and mass spectral analyses. Based on the structure of the saponin, the predicted precursor should be the GAC2, which was confirmed to be biotransformed into four saponins, GAC2-3-O-ß-glucoside, GAC2-3,15-O-ß-diglucoside and two unknown GAC2 monoglucosides, revealed by NMR and mass spectral analyses. GAC2-3-O-ß-glucoside and GAC2-3,15-O-ß-diglucoside possessed 17-fold and 200-fold higher aqueous solubility than that of GAC2, respectively. In addition, GAC2-3-O-ß-glucoside retained the most anti-α-glucosidase activity of GAC2 and was comparable with that of the anti-diabetes drug (acarbose). The present study showed that the BGP process is an efficient strategy to survey novel and bioactive molecules from crude extracts of natural products.


Asunto(s)
Ganoderma , Saponinas , Triterpenos , Ganoderma/química , Biotransformación , Glucósidos
19.
Zool Stud ; 62: e25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533557

RESUMEN

Abscondita cerata is the most abundant and widely distributed endemic firefly species in Taiwan and is considered a key environmental and ecological indicator organism. In this study, we report the first long-read genome sequencing of Abs. cerata sequenced by Nanopore technology. The draft genome size, 967 Mb, was measured through a hybrid approach that consisted of assembling using 11.25-Gb Nanopore long reads and polishing using 9.47-Gb BGI PE100 short reads. The drafted genome was assembled into 4,855 contigs, with the N50 reaching 325.269 kb length. The assembled genome was predicted to possess 55,206 protein-coding genes, of which 20,862 (37.78%) were functionally annotated with public databases. 47.11% of the genome sequences consisted of repeat elements; among them DNA transposons accounted for the largest proportion (26.79%). A BUSCO (Benchmarking Universal Single Copy Orthologs) evaluation demonstrated that the genome and gene completeness were 84.8% and 79%, respectively. The phylogeny constructed using 1,792 single copy genes was consistent with previous studies. The comparative transcriptome between adult male head and lantern tissues revealed (1) the vision of Abs. cerata is primarily UV-sensitive to environmental twilight, which determines when it begins its nocturnal activity, (2) the major expressed OR56d receptor may be correlated to suitable humidity sensing, and (3) Luc1-type luciferase is responsible for Abs. cerata's luminescent spectrum.

20.
Biology (Basel) ; 11(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35053057

RESUMEN

It is highly challenging to evaluate the species' content and behavior changes in wild fireflies, especially for a sympatric population. Here, the flash interval (FI) and flash duration (FD) of flying males from three sympatric species (Abscondita cerata, Luciola kagiana, and Luciola curtithorax) were investigated for their potentials in assessing species composition and nocturnal behaviors during the A. cerata mating season. Both FI and FD were quantified from the continuous flashes of adult fireflies (lasting 5-30 s) via spatiotemporal analyses of video recorded along the Genliao hiking trail in Taipei, Taiwan. Compared to FD patterns and flash colors, FI patterns exhibited the highest species specificity, making them a suitable reference for differentiating firefly species. Through the case study of a massive occurrence of A. cerata (21 April 2018), the species contents (~85% of the flying population) and active periods of a sympatric population comprising A. cerata and L. kagiana were successfully evaluated by FI pattern matching, as well as field specimen collections. Our study suggests that FI patterns may be a reliable species-specific luminous marker for monitoring the behavioral changes in a sympatric firefly population in the field, and has implication values for firefly conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA