Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1852(2): 343-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24993069

RESUMEN

Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²âº mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase ß(IKKß), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKß, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKß-AMPK-dependent restoration of myocardial autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/metabolismo , Autofagia , Catalasa/metabolismo , Dieta Alta en Grasa , Corazón/fisiopatología , Quinasa I-kappa B/metabolismo , Animales , Autofagia/efectos de los fármacos , Calcio/metabolismo , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Ecocardiografía , Conducta Alimentaria/efectos de los fármacos , Corazón/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Ratones Transgénicos , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
2.
ACS Synth Biol ; 12(6): 1836-1844, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37271978

RESUMEN

Geraniol is a class of natural products that are widely used in the aroma industry due to their unique aroma. Here, to achieve the synthesis of geraniol and alleviate the intense competition from the yeast ergosterol pathway, a transcription factor-mediated ergosterol feedback system was developed in this study to autonomously regulate ergosterol metabolism and redirect carbon flux to geraniol synthesis. In addition, the modification of ergosterol-responsive promoters, the optimization of transcription factor expression intensity, and stepwise metabolic engineering resulted in a geraniol titer of 531.7 mg L-1. For sustainable production of geraniol, we constructed a xylose assimilation pathway in Candida glycerinogenes (C. glycerinogenes). Then, the xylose metabolic capacity was ameliorated and the growth of the engineered strain was rescued by activating the pentose phosphate (PP) pathway. Finally, we obtained 1091.6, 862.4, and 921.8 mg L-1 of geraniol in a 5 L bioreactor by using pure glucose, simulated wheat straw hydrolysates, and simulated sugarcane bagasse hydrolysates, with yields of 47.5, 57.9, and 59.1 mg g-1 DCW, respectively. Our study demonstrated that C. glycerinogenes has the potential to produce geraniol from lignocellulosic biomass, providing a powerful tool for the sustainable synthesis of other valuable monoterpenes.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Ingeniería Metabólica/métodos , Xilosa/metabolismo , Fermentación , Saccharum/metabolismo , Factores de Transcripción/metabolismo
3.
ACS Synth Biol ; 11(5): 1835-1844, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35507528

RESUMEN

Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.


Asunto(s)
Ingeniería Metabólica , Monoterpenos , Monoterpenos Acíclicos , Alcanos , Pichia
4.
ACS Synth Biol ; 11(2): 900-908, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35138824

RESUMEN

Caffeic acid (CA), a natural phenolic compound, has important medicinal value and market potential. In this study, we report a metabolic engineering strategy for the biosynthesis of CA in Candida glycerinogenes using xylose and glucose. The availability of precursors was increased by optimization of the shikimate (SA) pathway and the aromatic amino acid pathway. Subsequently, the carbon flux into the SA pathway was maximized by introducing a xylose metabolic pathway and optimizing the xylose assimilation pathway. Eventually, a high yielding strain CG19 was obtained, which reached a yield of 4.61 mg/g CA from mixed sugar, which was 1.2-fold higher than that of glucose. The CA titer in the 5 L bioreactor reached 431.45 mg/L with a yield of 8.63 mg/g of mixed sugar. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of CA. This is the first report to produce CA in C. glycerinogenes with xylose and glucose as carbon sources, which developed a promising strategy for the efficient production of high-value aromatic compounds.


Asunto(s)
Glucosa , Xilosa , Ácidos Cafeicos , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica/métodos , Pichia , Xilosa/metabolismo
5.
J Mol Histol ; 50(3): 239-251, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31049798

RESUMEN

Reduced expression of endothelial nitric oxide synthase (eNOS) is a hallmark of endothelial dysfunction in diabetes, which predisposes diabetic patients to numerous cardiovascular complications including blunted angiogenesis. The Krüppel-like factor (KLF) five has been implicated as a central regulator of cardiovascular remodeling, but its role in endothelial cells (ECs) remains poorly understood. We show here that expression of endothelial KLF5 was significantly increased in the ECs from mouse diabetes mellitus type 2 (T2DM) model, when compared to non-diabetic or T1DM mouse. KLF5 up-regulation by insulin was dependent on activation of multiple pathways, including mammalian target of rapamycin, oxidative stress and Protein kinase C pathways. Hyperinsulinemia-induced KLF5 inhibited endothelial function and migration, and thereby compromised in vitro and in vivo angiogenesis. Mechanistically, KLF5 acted in concert with the MTA1 coregulator to negatively regulate NOS3 transcription, thereby leading to the diminished eNOS levels in ECs. Conversely, potentiation of cGMP content (the essential downstream effector of eNOS signaling) by pharmacological approaches successfully rescued the endothelial proliferation and in vitro tube formation, in the HUVECs overexpressing the exogenous KLF5. Collectively, the available data suggest that the augmentation of endothelial KLF5 expression by hyperinsulinemia may represent a novel mechanism for negatively regulating eNOS expression, and may thus help to explain for the T2DM-related endothelial dysfunction at the transcriptional level.


Asunto(s)
Hiperinsulinismo/genética , Factores de Transcripción de Tipo Kruppel/genética , Neovascularización Patológica/genética , Óxido Nítrico Sintasa de Tipo III/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Expresión Génica/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hiperinsulinismo/patología , Masculino , Ratones , Estrés Oxidativo/genética , Proteína Quinasa C/genética , Transducción de Señal/genética
6.
Chem Biol Interact ; 307: 73-81, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004593

RESUMEN

Parkinson's disease (PD), the second most prevalent age-related neurodegenerative disease, occurs as a result of the loss of dopaminergic neurons in the substantia nigra. Long non-coding RNA-p21 (lnc-p21) has been demonstrated to be upregulated in PD. However, its role in PD is unknown. Here, the results showed that lnc-p21 was highly expressed in human neuroblastoma SH-SY5Y cells treated with MPP+. Knockdown of lnc-p21 attenuated the cytotoxicity and cell apoptosis induced by MPP+ as shown by enhanced cell viability, decreased LDH release and cell apoptosis rate, accompanying with reduction of caspase-3 activity and Bax expression, and enhancement of Bcl-2 expression. Furthermore, knockdown of lnc-p21 mitigated MPP+-induced oxidative stress and neuroinflammation, as evidenced by the decrease in ROS generation, increase in SOD activity and decline in TNF-α, IL-1ß and IL-6 levels. Conversely, overexpression of lnc-p21 resulted in the opposite effect. miR-625 was identified as a target of lnc-p21. lnc-p21 overturned the inhibitory effect of miR-625 on MPP+-induced neuronal injury in SH-SY5Y cells. Additionally, lnc-p21 positively regulated TRPM2 expression by targeting miR-625, and knockdown of TRPM2 inhibited MPP+-induced neuronal injury. Overall, our study identified a new lnc-p21-miR-625-TRPM2 regulatory network that lnc-p21 regulated MPP + -induced neuronal injury by sponging miR-625 and upregulating TRPM2 in SH-SY5Y cells, which provide a better understanding for the pathogenesis of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Apoptosis/efectos de los fármacos , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Canales Catiónicos TRPM/metabolismo , Regiones no Traducidas 3' , Antagomirs/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 27(2): 173-6, 2011 Feb.
Artículo en Zh | MEDLINE | ID: mdl-21315049

RESUMEN

AIM: To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. METHODS: The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. RESULTS: The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. CONCLUSION: The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.


Asunto(s)
Baculoviridae/genética , Baculoviridae/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Cabras , Insectos/citología , Interferón gamma/metabolismo , Interleucina-18/farmacología , Activación de Linfocitos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Vesiculovirus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA