Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zygote ; : 1-10, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291681

RESUMEN

Endometrial receptivity is the ability of the endometrium to accept embryos. Thus, endometrial receptivity dysfunction is an important factor leading to embryo implantation failure. A good endometrial receptivity provides a suitable environment for embryo implantation, improving the embryo implantation rate. The "implantation window" stage, or the receptive stage of the endometrium, is regulated by various hormones, genes, proteins and cytokines, among which microRNAs (miRNAs) and their target genes have a regulatory effect on endometrial receptivity. This review outlines the relationship between endometrial receptivity and pregnancy, the mRNAs and related signalling pathways that regulate endometrial receptivity, and the regulatory role of miRNA in endometrial receptivity, providing a deeper understanding of the regulatory mechanisms of miRNA on endometrial receptivity in humans and animals and reference for the endometrial receptivity-related research.

2.
Anim Biotechnol ; 34(7): 3216-3236, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200856

RESUMEN

Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.


Asunto(s)
Adipocitos , Adipogénesis , Humanos , Animales , Técnicas de Cocultivo , Adipocitos/fisiología , Diferenciación Celular , Carne , Músculo Esquelético/fisiología , Tejido Adiposo/fisiología
3.
Anim Biotechnol ; 34(4): 1447-1454, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35254208

RESUMEN

MicroRNAs have been recently reported to act as key regulators of adipogenesis, a multifactorial complex process. One miRNA, miR-302b, is an important regulator of cell proliferation and differentiation and controls cancer development, but we speculate that miR-302b may also regulate bovine adipogenesis. Herein we have evaluated the role of this miRNA in bovine adipocyte differentiation using quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), Oil Red O staining, a dual-luciferase reporter. CDK2 was identified as the target gene of miR-302b, and miR-302b agomir promoted mRNA and protein expression levels of adipocyte-specific genes. In addition, a CCK-8 kit was used to show that miR-302b agomir, but not the negative control, inhibits preadipocyte proliferation. In conclusion, miR-302b promotes bovine preadipocyte differentiation and inhibits proliferation by targeting CDK2.


Asunto(s)
MicroARNs , Animales , Bovinos , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Adipogénesis/genética , Adipocitos/metabolismo
4.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1197-1207, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34791721

RESUMEN

The proliferation and differentiation of pre-adipocytes are regulated by microRNAs (miRNAs) and other factors. In this study, the potential functions of bta-miR-6517 in the regulation of pre-adipocyte proliferation and differentiation were explored. The qRT-PCR, oil red O staining and CCK-8 assay were used to evaluate the role of bta-miR-6517. Further, the target gene of bta-miR-6517 was identified using bioinformatics analysis, dual-luciferase reporter system and qRT-PCR system. The results found that the overexpression of bta-miR-6517 promoted the expression of proliferation marker genes and substantially increased the adipocyte proliferation vitality in the CCK-8 assay, whereas suppressing of bta-miR-6517 had the opposite effect. Overexpression bta-miR-6517 suppressed the expression of adipogenic genes, which inhibited lipid accumulation, whereas suppressing of bta-miR-6517 had the opposite effect. Furthermore, the dual-fluorescent reporter experiment results demonstrated that bta-miR-6517 directly targeted phosphofructokinase, liver type (PFKL). When bta-miR-6517 was either overexpressed or suppressed, it negatively regulated PFKL. In conclusion, we observed that bta-miR-6517 promoted adipocyte proliferation and inhibited differentiation by targeting PFKL.


Asunto(s)
MicroARNs , Fosfofructoquinasas , Animales , Fosfofructoquinasas/metabolismo , Adipocitos , MicroARNs/genética , Proliferación Celular , Hígado/metabolismo , Diferenciación Celular
5.
Cities ; 131: 104028, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36217508

RESUMEN

Mandatory policy networks are an important collaborative governance model for crisis response. To reveal the operation and effectiveness of public sector-led crisis governance at the development zone level, this study draws on collaborative governance theory to develop a theoretical framework that reveals the external constraints, collaborative dynamics, collaborative actions, and collaborative outcomes of crisis governance in development zones. Based on qualitative research methods, this study analyzes pandemic prevention policy documents issued during the pandemic by China's national economic and technological development zones and their localities to reflect the complete process of governance. The findings indicate that a mandatory policy network, guided by a local governance framework, facilitated the rapid achievement of collaboration in development zones in responding to the crisis. Top-down leadership developed over time in the public sector, and the responsiveness and innovation of enterprises and social organizations played an important role in collaborative governance. Wins at each stage of the governance process are necessary for the continuation of collaborative actions and can drive the adaptation of a collaborative approach in development zones.

6.
BMC Genomics ; 22(1): 532, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253191

RESUMEN

BACKGROUND: Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. RESULTS: We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. CONCLUSION: In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Asunto(s)
Adipocitos , Quinasas Ciclina-Dependientes , Animales , Bovinos , Ciclo Celular , Diferenciación Celular/genética , Quinasas Ciclina-Dependientes/genética , Filogenia
7.
Mol Cell Biochem ; 476(7): 2837-2845, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33730298

RESUMEN

Lipid metabolism, which encompasses synthesis and degradation of lipids, is critical for a wide range of cellular functions, including structural and morphological properties of organelles, energy storage, signalling, and the stability and function of membrane proteins. Adipose tissue is a dynamic tissue type that performs a lot of significant physiological functions, including secretion, and is involved in maintaining homeostasis and in regulatory roles of other tissues based on paracrine or endocrine. More recently, several classes of non-coding RNAs (ncRNAs), such as long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA), have been discovered in adipocytes, and they act as critical regulators of gene expression in adipogenesis and regulate adipogenesis through multiple pathways. In the present paper, we discussed several classes of non-coding RNAs and summarized the latest research on the regulatory role of ncRNAs in bovine adipogenesis. We gave examples for known modes of action to look forward to providing reference information future scientific research in cattle breeding.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Bovinos
8.
Vet Res ; 52(1): 122, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535180

RESUMEN

Mastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3' untranslated region (3' UTR) of the NKIRAS2, but not the 3'UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades de los Bovinos/genética , Marcación de Gen/veterinaria , Inflamación/veterinaria , MicroARNs/genética , Animales , Proteínas Portadoras/metabolismo , Bovinos , Enfermedades de los Bovinos/inmunología , Línea Celular , Células Epiteliales/inmunología , Inflamación/genética , Inflamación/inmunología , MicroARNs/metabolismo
9.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833699

RESUMEN

We developed a cavity ringdown spectrometer by utilizing a step-scanning and dithering method for matching laser wavelengths to optical resonances of an optical cavity. Our approach is capable of working with two and more lasers for quasi-simultaneous measurements of multiple gas species. The developed system was tested with two lasers operating around 1654 nm and 1658 nm for spectral detections of 12CH4 and its isotope 13CH4 in air, respectively. The ringdown time of the empty cavity was about 340 µs. The achieved high detection sensitivity of a noise-equivalent absorption coefficient was 2.8 × 10-11 cm-1 Hz-1/2 or 1 × 10-11 cm-1 by averaging for 30 s. The uncertainty of the high precision determination of δ13CH4 in air is about 1.3‰. Such a system will be useful for future applications such as environmental monitoring.


Asunto(s)
Monitoreo del Ambiente , Rayos Láser , Análisis Espectral
10.
Physiol Genomics ; 52(3): 160-167, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32036767

RESUMEN

As a member of the Iroquois homeobox gene family, the IRX3 gene plays an important role in regulating the growth, development and fat deposition of chordates. In the present study, we found, using real-time PCR, that the bovine IRX3 gene was highly expressed in lung, kidney, heart, subcutaneous fat and longissimus dorsi muscle. We cloned the full-length sequence of the bovine IRX3 gene promoter and constructed eight series of 5' deletion promoter plasmid luciferase reporter assays and then transfected them to 3T3-L1 and C2C12 cell lines to detect its core promoter regions. The results showed that the core promoter of bovine IRX3 was located within a -292/-42 bp region relative to the transcriptional start site. Furthermore, sequence analysis identified eight CpG islands in the promoter region. A chromatin immunoprecipitation assay in combination with site-directed mutation and siRNA interference demonstrated that SREBF2 and PPARG binding occurs in region -292/-42 and is essential in bovine IRX3 transcription. These results lay an important theoretical foundation for exploring the molecular regulation mechanism of the IRX3 gene in bovine fat deposition.


Asunto(s)
Proteínas de Homeodominio/genética , PPAR gamma/metabolismo , Regiones Promotoras Genéticas/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/genética , Células 3T3-L1 , Animales , Sitios de Unión , Bovinos , Inmunoprecipitación de Cromatina , Islas de CpG/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Riñón/metabolismo , Pulmón/metabolismo , Ratones , PPAR gamma/genética , Interferencia de ARN , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Transfección
11.
Opt Express ; 28(3): 3289-3297, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122001

RESUMEN

Tunable diode laser absorption spectroscopy has been widely employed for gas sensing, where the gas concentration is often obtained from the absorption signal with a known or a fixed absorption path length. Nevertheless, there are also numerous applications in which the absorption path length is very challenging to retrieve, e.g., open path remote sensing and gas absorption in scattering media. In this work, a new approach, based on the wavelength modulation spectroscopy (WMS), has been developed to measure the gas absorption signal and the corresponding absorption path length simultaneously. The phase angle of the first harmonic signal (1f phase angle) in the WMS technique is utilized for retrieving the absorption path length as well as the gas absorption signal. This approach has been experimentally validated by measuring carbon dioxide (CO2) concentration in open path environment. The CO2 concentration is evaluated by measuring the reflectance signal from a distant object with hundreds of meters away from the system. The measurement accuracy of the absorption path length, evaluated from a 7-day continuous measurement, can reach up to 1%. The promising result has shown a great potential of utilizing the 1f phase angle for gas concentration measurements, e.g., open path remote sensing applications.

12.
Mol Cell Probes ; 35: 27-33, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28627449

RESUMEN

In human, microRNA-214 (miR-214) plays crucial roles in mechanisms of immunity. However, the potential importance of miR-214 in immune mechanisms in dairy cows has not been investigated. In this study, we assessed potential immunity-related functions of miR-214 in human 293A cells and in bovine mammary epithelial cells (BMECs). We found that NFATc3 and TRAF3 could be targeted by miR-214 in both 293A cells and BMECs. We also found that miR-214 indirectly inhibited the expression of MAP3K14, TBK1 and inflammatory cytokines IL-6 and IL-1ß. Taken together, our data revealed miR-214 regulated immunity-related genes by targeting NFATc3 and TRAF3, which provides insight into the molecular basis of immunity.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , MicroARNs/metabolismo , Factores de Transcripción NFATC/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Animales , Bovinos , Línea Celular , Femenino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , MicroARNs/genética , Factores de Transcripción NFATC/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 3 Asociado a Receptor de TNF/genética
13.
J Dairy Sci ; 100(9): 7648-7658, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28690061

RESUMEN

It has been reported previously that bovine miR-146a (bta-miR-146a) is significantly differentially expressed in mammary glands infected with mastitis, compared with healthy udders. This suggests that bta-miR-146a plays an important role in the regulation of mammary inflammation. However, the specifics of this function have yet to be elucidated. Bovine mammary epithelial cells (bMEC) represent the first line of defense against pathogens and have important roles in initiating and regulating inflammatory responses and innate immunity during infection. In this study, a double luciferase reporter assay was used to confirm that bta-miR-146a directly targets the 3' UTR of the tumor-necrosis factor receptor-associated factor 6 (TRAF6) gene. To elucidate the role of bta-miR-146a in innate immune responses, either a mimic or inhibitor of bta-miR-146a was transfected into bMEC stimulated with lipopolysaccharide, which activates the innate immune response through the toll-like receptor (TLR) 4/nuclear factor (NF)-κB signaling pathway. Forty-eight hours posttransfection, quantitative real-time PCR and Western blots were used to detect the expressions of the related genes and proteins, respectively. An ELISA was used to measure the quantity of inflammatory factors in culture supernatants. The results showed that bta-miR-146a significantly inhibits both mRNA and protein expression levels of bovine TRAF6, and ultimately suppresses downstream expression of NF-κB mRNA and protein. As a result, production of NF-κB-dependent inflammatory mediators such as tumor necrosis factor α, IL-6, and IL-8 are suppressed following lipopolysaccharide stimulation of bMEC. Thus, we concluded that bta-miR-146a acts as a negative feedback regulator of bovine inflammation and innate immunity through downregulation of the TLR4/TRAF6/NF-κB pathway. This study presents a potential regulatory mechanism of bta-miR-146a on immune responses in bovine mammary infection and may provide a potential therapeutic target for mastitis.


Asunto(s)
Células Epiteliales/inmunología , Inmunidad Innata , Glándulas Mamarias Animales/inmunología , Factor 6 Asociado a Receptor de TNF/genética , Animales , Bovinos , Femenino , Expresión Génica , Glándulas Mamarias Animales/citología , FN-kappa B , Factor 6 Asociado a Receptor de TNF/inmunología
15.
Heliyon ; 10(14): e34411, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104502

RESUMEN

African countries are consistently trying to leverage industrialization to advance their economic development. Despite possessing favorable factors such as abundant natural resources, a surplus of low-cost labor, and an increasing number of established Special Economic Zones (SEZs), African countries are yet to fully maximize their potential and achieve sustainable and inclusive industrialization. This study explores the comparative advantages of African countries to determine the types of SEZs that can effectively accelerate industrialization. By leveraging the unique strengths and resources of each country, customized strategies for SEZs can be developed to attract investments, promote technological advancements, and foster sustainable economic growth. The research utilizes the Revealed Comparative Advantage (RCA) matrix, which is grounded in Ricardian trade theory, examining trade data spanning from 2011 to 2021 to evaluate the competitive export capabilities of various countries. The findings consistently reveal that the selected countries (Ghana, Ethiopia, and South Africa) possess a significant and consistent comparative advantage in natural and agricultural resources compared to other sectors. Establishing SEZs that focus on these sectors can generate substantial socio-economic impacts, including attracting investments, creating employment opportunities, enhancing export capacities, stimulating economic growth, fostering linkages, facilitating skills and technology transfer, promoting spillover effects, encouraging specialization, developing infrastructure, and supporting value addition in agribusinesses. The result of this study will contribute to policy discussions and aid decision-making processes for policymakers, investors, and development practitioners in their efforts to advance industrial development across Africa.

16.
Animals (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272385

RESUMEN

Low fertility is the main cause of the low productivity in beef cattle and is mainly associated with a lack of conception after fertilization. The establishment of early pregnancy in cattle is a complex physiological process, and embryo implantation is crucial for the successful establishment of pregnancy. Exosomal miRNAs play an important role in regulating mammalian embryo implantation and development. This study used synchronous estrus technology to extract exosomes from bovine serum at 0, 14, and 21 days of early pregnancy and analyzed the expression profile of exosomal miRNAs through RNA-seq technology. We identified 472 miRNA precursor sequences and 367 mature miRNA sequences in the three sample groups, with the majority of the miRNAs having high abundance. Differentially expressed miRNAs (DEmiRNAs) were screened, and 20 DEmiRNAs were obtained. The differential expression analysis results show that compared to day 0, there were 15 DEmiRNAs in the serum on day 14 and 5 on day 21 of pregnancy. Compared to the 14th day of pregnancy, there were eight DEmiRNAs in the serum on the 21st day of pregnancy. Bioinformatics analysis shows that the target genes of DEmiRNAs regulated the signaling pathways closely related to early pregnancy, including the VEGF, NF-κB, and MAPK signaling pathways. In addition, the newly discovered miRNAs were bta-miR-3604, bta-miR-2889, bta-miR-3432a, and bta-miR-409b. These results provide a theoretical reference for screening the molecular markers for early pregnancy establishment and maternal recognition of pregnancy (MRP) in cattle and new ideas for shortening the calving interval in cows.

17.
Int J Biol Macromol ; 261(Pt 1): 129710, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278392

RESUMEN

Bovine mastitis seriously affects milk production and quality and causes huge economic losses in the dairy industry. Recent studies have shown that long non-coding RNAs (lncRNAs) may regulate bovine mastitis. In this study, the expression of lncRNA CA12-AS1 was significantly upregulated in LPS-induced bovine mammary epithelial cells (bMECs) but negatively correlated with the expression of miR-133a, suggesting that it may be related to the inflammatory response in bMECs. Dual luciferase reporter gene assay revealed that miR-133a is a downstream target gene of lncRNA CA12-AS1. Furthermore, lncRNA CA12-AS1 silencing negatively regulated the expression of miR-133a inhibited the secretion of inflammatory factors (IL-6, IL-8 and IL-1ß) and decreased the mRNA expression levels of nuclear factor kappa B (NF-κB) (p65/p50) and apoptosis-related genes (BAX, caspase3 and caspase9). LncRNA CA12-AS1 silencing also promoted the mRNA expression levels of the Tight junction (TJ) signaling pathway-related genes (Claudin-1, Occludin and ZO-1), apoptotic gene BCL2, proliferation-related genes (CDK2, CDK4 and PCNA) and the viability of bMECs. However, overexpression of lncRNA CA12-AS1 reversed the above effects. These results revealed that lncRNA CA12-AS1 is a pro-inflammatory regulator, and its silencing can alleviate bovine mastitis by targeting miR-133a, providing a novel strategy for molecular therapy of cow mastitis.


Asunto(s)
Mastitis Bovina , MicroARNs , ARN Largo no Codificante , Femenino , Bovinos , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Lipopolisacáridos/farmacología , Mastitis Bovina/genética , Mastitis Bovina/metabolismo , Proliferación Celular/genética , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo
19.
Sci Total Environ ; 905: 167136, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37739078

RESUMEN

The source region of the Yellow River (SRYR) is located at the edge of the Qinghai-Tibet Plateau (QTP), which is completely covered by frozen ground. Due to relatively higher temperatures, the frozen ground in the SRYR is particularly fragile and susceptible to the impacts of global climate change. This study discusses the maximum freeze depth (MFD) of frozen ground in the SRYR, including analysis of measured data at the stations, comparison of simulation models, and projection of future changes. The MFD of frozen ground recorded at nine meteorological stations within the SRYR ranged from a few tens of centimeters to more than two meters. The decreasing trend of MFD was recorded except for a few stations from 1997 to 2017, with a maximum rate of -22.8 cm/10a. The decreasing rate of MFD for the whole SRYR from 1997 to 2017 is -10.8 cm/10a. Furthermore, we assessed the performance of three simulation methods: Stefan equation, multiple linear regression, and BP neural network predicting the MFD using the measured data. The Stefan equation exhibited limited accuracy in simulating the MFD, while the BP neural network demonstrated remarkable performance, with a correlation coefficient R of 0.949. In addition, we evaluated the applicability of different global climate models (GCMs) in the SRYR, identified the optimal model, and combined it with the BP neural network model to predict future MFD change. Among the five climate models, the BCC-CSM2-MR model and ensemble model fit the measured precipitation and air temperature well. The projected results based on the BCC-CSM2-MR model and ensemble model indicate that the MFD of different stations in the SRYR and the whole region will still tend to decrease in the future. Our results contribute to understanding the response of cold region frozen ground to climate change and provide available data.

20.
Int J Biol Macromol ; 248: 126025, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506793

RESUMEN

Intramuscular fat content is closely related to the quality of beef, where the forkhead box protein O1 (FOXO1) is involved in adipocyte differentiation and lipid metabolism, but the specific mechanism of its involvement is still unclear. In this study, interfering with FOXO1 promoted the G1/S transformation of bovine adipocytes by enhancing the expression of proliferation marker genes PCNA, CDK1, CDK2, CCNA2, CCNB1, and CCNE2, thereby positively regulating the proliferation of bovine adipocytes. Additionally, interfering with FOXO1 negatively regulated the expression of adipogenic differentiation marker genes PPARG and CEBPA, as well as lipid anabolism marker genes ACC, FASN, SCD1, SREBP1, FABP4, ACSL1, LPL, and DGAT1, thus reducing triglyceride (TG) content and inhibiting the generation of lipid droplets in bovine adipocytes. A combination of transcriptomic and metabolomics analyses revealed that FOXO1 could regulate the lipogenesis of cattle by influencing the AMPK and PI3K/AKT pathways. Importantly, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis revealed that FOXO1 could regulate bovine lipogenesis by binding to the promoter regions of the CD36 and STEAP4 genes and affecting their transcriptional activities. These results provide a foundation for studying the role and molecular mechanism of FOXO1 in the bovine adipogenesis.


Asunto(s)
Adipocitos , Fosfatidilinositol 3-Quinasas , Bovinos , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Adipocitos/metabolismo , Metabolismo de los Lípidos/genética , Adipogénesis/genética , Perfilación de la Expresión Génica , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA