Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(7): 1268-1283.e9, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35700739

RESUMEN

The incidence and mortality rates of many non-reproductive human cancers are generally higher in males than in females. However, the immunological mechanism underlying sexual differences in cancers remains elusive. Here, we demonstrated that sex-related differences in tumor burden depended on adaptive immunity. Male CD8+ T cells exhibited impaired effector and stem cell-like properties compared with female CD8+ T cells. Mechanistically, androgen receptor inhibited the activity and stemness of male tumor-infiltrating CD8+ T cells by regulating epigenetic and transcriptional differentiation programs. Castration combined with anti-PD-L1 treatment synergistically restricted tumor growth in male mice. In humans, fewer male CD8+ T cells maintained a stem cell-like memory state compared with female counterparts. Moreover, AR expression correlated with tumor-infiltrating CD8+ T cell exhaustion in cancer patients. Our findings reveal sex-biased CD8+ T cell stemness programs in cancer progression and in the responses to cancer immunotherapy, providing insights into the development of sex-based immunotherapeutic strategies for cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Neoplasias/terapia , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Caracteres Sexuales , Microambiente Tumoral
2.
Nature ; 613(7943): 274-279, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631650

RESUMEN

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

3.
Nature ; 605(7908): 69-75, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508774

RESUMEN

Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3-5. However, despite advances in the growth of monolayer TMDs6-14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6 cm2 V-1 s-1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA µm-1, which exceeds the 2028 roadmap target for high-performance FETs16.

5.
Nano Lett ; 24(23): 6931-6938, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804717

RESUMEN

Spin-orbit torque magnetic random access memory (SOT-MRAM) has great promise in high write speed and low power consumption. Mo can play a vital role in constructing a CoFeB/MgO-based MRAM cell because of its ability to enhance the perpendicular magnetic anisotropy (PMA), thermal tolerance, and tunneling magnetoresistance. However, Mo is often considered as a less favorable candidate among SOT materials because of its weak spin-orbit coupling. In this study, we experimentally investigate the SOT efficiencies in Mo/CoFeB/MgO heterostructures over a wide range of Mo thicknesses and temperature. Decent damping-like SOT efficiency |ξDL| = 0.015 ± 0.001 and field-like SOT efficiency |ξFL| = 0.050 ± 0.001 are found in amorphous Mo. The ξFL/ξDL ratio is greater than 3. Furthermore, efficient current-induced magnetization switching is demonstrated with the critical current density comparable with heavy metal Ir and W. Our work reveals new understanding and possibilities for Mo as both an SOT source component and PMA buffer layer in the implementation of SOT-MRAMs.

6.
BMC Genomics ; 25(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166640

RESUMEN

BACKGROUND: Penicillium chrysogenum is a filamentous fungal species with diverse habitats, yet little is known about its genetics in adapting to extreme subseafloor sedimental environments. RESULTS: Here, we report the discovery of P. chrysogenum strain 28R-6-F01, isolated from deep coal-bearing sediments 2306 m beneath the seafloor. This strain possesses exceptional characteristics, including the ability to thrive in extreme conditions such as high temperature (45 °C), high pressure (35 Mpa), and anaerobic environments, and exhibits broad-spectrum antimicrobial activity, producing the antibiotic penicillin at a concentration of 358 µg/mL. Genome sequencing and assembly revealed a genome size of 33.19 Mb with a GC content of 48.84%, containing 6959 coding genes. Comparative analysis with eight terrestrial strains identified 88 unique genes primarily associated with penicillin and aflatoxins biosynthesis, carbohydrate degradation, viral resistance, and three secondary metabolism gene clusters. Furthermore, significant expansions in gene families related to DNA repair were observed, likely linked to the strain's adaptation to its environmental niche. CONCLUSIONS: Our findings provide insights into the genomic and biological characteristics of P. chrysogenum adaptation to extreme anaerobic subseafloor sedimentary environments, such as high temperature and pressure.


Asunto(s)
Penicillium chrysogenum , Penicillium chrysogenum/genética , Genómica , Genoma Fúngico , Genes Fúngicos , Penicilinas/metabolismo
7.
Breast Cancer Res Treat ; 203(2): 373-381, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37843776

RESUMEN

OBJECTIVE: The aim of this study is to evaluate the clinicopathological features and prognostic significance of HER2 low, fibrotic focus (FF), and tumor-infiltrating lymphocytes (TILs) in patients with HER2-negative breast cancer. METHODS: We retrospectively reviewed the data of 293 patients with HER2-negative, stage I-II, invasive breast cancer of non-specific types. The HER2-negative cases were classified into HER2 low and HER2 0. Digital analysis of hematoxylin-eosin stained whole slide images was used to evaluate the FF expression. TILs were also evaluated using the Whole Slide Image. Furthermore, the association between HER2 low, FF, and TILs as well as their prognostic significance were analyzed. RESULTS: The study cohort included 178 cases (60.8%) with HER2 low and 115 cases (39.2%) with HER2 0. Older age, lower Nottingham histological grade (NHG), estrogen receptor (ER) positivity, progesterone receptor (PR) positivity, and hormone receptor (HR) positivity were all associated with HER2 low. FF was correlated with older age, intermediate and low NHG, vascular invasion, HR positivity, HER2 low status, high Ki67 expression, and low TILs. Univariate survival analysis showed that FF was significantly associated with shorter progression-free survival (PFS). Stratified analysis indicated that in the HR-negative and HR-positive groups, HER2 status and TILs did not affect PFS. DFS was longer in patients without FF compared to those with FF in the HR-positive (hazard ratio [HR] = 0.313) and HER2 low (HR = 0.272) groups. DFS was also significantly longer in patients without FF compared to those with FF in the HR-negative (HR = 0.069) and HER2 0 groups (HR = 0.129). CONCLUSION: The results indicated that the HER2 low status and the TILs expression did not impact prognosis. However, patients with FF exhibited distinct biological characteristics and prognostic significance, particularly in the HR-negative and HER2 0 groups. This provides a rationale for accurate diagnosis and treatment of HER2-negative breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Pronóstico , Estudios Retrospectivos , Receptor ErbB-2/metabolismo , Linfocitos Infiltrantes de Tumor , Supervivencia sin Enfermedad
8.
Small ; : e2403136, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770989

RESUMEN

Hollandite-type manganese dioxide (α-MnO2) is recognized as a promising cathode material upon high-performance aqueous zinc-ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co-insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic-zincophobic heterointerface, fulfilling the H+-dominating diffusion with the state-of-the-art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface-engineered α-MnO2 affords to the synergy of Mn electron t2g-eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α-MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long-lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+-dominating Grotthuss transfer and lattice stabilization in α-MnO2 toward reliable ZIBs.

9.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36007239

RESUMEN

Recently, many studies have shown that lncRNA can mediate the regulation of TF-gene in drug sensitivity. However, there is still a lack of systematic identification of lncRNA-TF-gene regulatory triplets for drug sensitivity. In this study, we propose a novel analytic approach to systematically identify the lncRNA-TF-gene regulatory triplets related to the drug sensitivity by integrating transcriptome data and drug sensitivity data. Totally, 1570 drug sensitivity-related lncRNA-TF-gene triplets were identified, and 16 307 relationships were formed between drugs and triplets. Then, a comprehensive characterization was performed. Drug sensitivity-related triplets affect a variety of biological functions including drug response-related pathways. Phenotypic similarity analysis showed that the drugs with many shared triplets had high similarity in their two-dimensional structures and indications. In addition, Network analysis revealed the diverse regulation mechanism of lncRNAs in different drugs. Also, survival analysis indicated that lncRNA-TF-gene triplets related to the drug sensitivity could be candidate prognostic biomarkers for clinical applications. Next, using the random walk algorithm, the results of which we screen therapeutic drugs for patients across three cancer types showed high accuracy in the drug-cell line heterogeneity network based on the identified triplets. Besides, we developed a user-friendly web interface-DrugSETs (http://bio-bigdata.hrbmu.edu.cn/DrugSETs/) available to explore 1570 lncRNA-TF-gene triplets relevant with 282 drugs. It can also submit a patient's expression profile to predict therapeutic drugs conveniently. In summary, our research may promote the study of lncRNAs in the drug resistance mechanism and improve the effectiveness of treatment.


Asunto(s)
ARN Largo no Codificante , Biomarcadores , Resistencia a Medicamentos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099718

RESUMEN

SUMMARY: Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex disease risk; however, most of these associations are non-coding, complicating identifying their proximal target gene. Transcriptome-wide association studies (TWASs) have been proposed to mitigate this gap by integrating expression quantitative trait loci (eQTL) data with GWAS data. Numerous methodological advancements have been made for TWAS, yet each approach requires ad hoc simulations to demonstrate feasibility. Here, we present twas_sim, a computationally scalable and easily extendable tool for simplified performance evaluation and power analysis for TWAS methods. AVAILABILITY AND IMPLEMENTATION: Software and documentation are available at https://github.com/mancusolab/twas_sim.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Humanos , Estudio de Asociación del Genoma Completo/métodos , Perfilación de la Expresión Génica , Simulación por Computador , Programas Informáticos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
11.
Nat Mater ; 22(9): 1078-1084, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37537352

RESUMEN

Two-dimensional (2D) semiconductors are promising channel materials for next-generation field-effect transistors (FETs). However, it remains challenging to integrate ultrathin and uniform high-κ dielectrics on 2D semiconductors to fabricate FETs with large gate capacitance. We report a versatile two-step approach to integrating high-quality dielectric film with sub-1 nm equivalent oxide thickness (EOT) on 2D semiconductors. Inorganic molecular crystal Sb2O3 is homogeneously deposited on 2D semiconductors as a buffer layer, which forms a high-quality oxide-to-semiconductor interface and offers a highly hydrophilic surface, enabling the integration of high-κ dielectrics via atomic layer deposition. Using this approach, we can fabricate monolayer molybdenum disulfide-based FETs with the thinnest EOT (0.67 nm). The transistors exhibit an on/off ratio of over 106 using an ultra-low operating voltage of 0.4 V, achieving unprecedently high gating efficiency. Our results may pave the way for the application of 2D materials in low-power ultrascaling electronics.

12.
Histopathology ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747491

RESUMEN

BACKGROUND AND AIMS: Evaluation of the programmed cell death ligand-1 (PD-L1) combined positive score (CPS) is vital to predict the efficacy of the immunotherapy in triple-negative breast cancer (TNBC), but pathologists show substantial variability in the consistency and accuracy of the interpretation. It is of great importance to establish an objective and effective method which is highly repeatable. METHODS: We proposed a model in a deep learning-based framework, which at the patch level incorporated cell analysis and tissue region analysis, followed by the whole-slide level fusion of patch results. Three rounds of ring studies (RSs) were conducted. Twenty-one pathologists of different levels from four institutions evaluated the PD-L1 CPS in TNBC specimens as continuous scores by visual assessment and our artificial intelligence (AI)-assisted method. RESULTS: In the visual assessment, the interpretation results of PD-L1 (Dako 22C3) CPS by different levels of pathologists have significant differences and showed weak consistency. Using AI-assisted interpretation, there were no significant differences between all pathologists (P = 0.43), and the intraclass correlation coefficient (ICC) value was increased from 0.618 [95% confidence interval (CI) = 0.524-0.719] to 0.931 (95% CI = 0.902-0.955). The accuracy of interpretation result is further improved to 0.919 (95% CI = 0.886-0.947). Acceptance of AI results by junior pathologists was the highest among all levels, and 80% of the AI results were accepted overall. CONCLUSION: With the help of the AI-assisted diagnostic method, different levels of pathologists achieved excellent consistency and repeatability in the interpretation of PD-L1 (Dako 22C3) CPS. Our AI-assisted diagnostic approach was proved to strengthen the consistency and repeatability in clinical practice.

13.
Chem Soc Rev ; 52(5): 1650-1671, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744507

RESUMEN

The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.

14.
Nano Lett ; 23(3): 1023-1029, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706340

RESUMEN

With unique electronic and optical attributes and dangling-bond-free surface, two-dimensional (2D) materials have broadened the functionalities of photodetectors. Here, we report a quadratically nonlinear photodetector (QNPD) composed of a van der Waals (vdW) stacked GaSe/InSe heterostructure. Compared with the reported 2D material-based photodetectors, the extra second-harmonic generation (SHG) process in GaSe/InSe leads to the quadratically nonlinear function between photocurrent and optical intensity, extending the photodetection wavelength from 900 to 1750 nm. The QNPD is highly sensitive to the variation of optical intensity with improved spatial resolution. With the light-light interaction in SHG converted into electrical signal directly, we also demonstrate the QNPD as an autocorrelator for measuring ultrafast pulse widths and an optoelectronic mixer of two modulated pulses for signal processings. The simultaneous involvement of light-light interaction and photoelectric conversion in the vdW stacked QNPD promises its potential to simplify the optoelectronic systems.

15.
Small ; 19(34): e2300468, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37035993

RESUMEN

The advent of big data era has put forward higher requirements for electronic nanodevices that have low energy consumption for their application in analog computing with memory and logic circuit to address attendant energy efficiency issues. Here, a miniaturized diode with a reversible switching state based on N-n MoS2 homojunction used a bandgap renormalization effect through the band alignment type regulated by both dielectric and polarization, controllably switched between type-I and type-II, which can be simulated as artificial synapse for sensing memory processing because of its rectification, nonvolatile characteristic and high optical responsiveness. The device demonstrates a rectification ratio of 103 . When served as memory retention time, it can attain at least 7000 s. For the synapse simulation, it has an ultralow-level energy consumption because of the pA-level operation current with 5 pJ for long-term potentiation and 7.8 fJ for long-term depression. Furthermore, the paired pulse facilitation index reaches up to 230%, and it realizes the function of optical storage that can be applied to simulate visual cells.

16.
Mod Pathol ; 36(3): 100054, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788100

RESUMEN

The new human epidermal growth factor receptor (HER)2-targeting antibody-drug conjugate offers the opportunity to treat patients with HER2-low breast cancer. Distinguishing HER2 immunohistochemical (IHC) scores of 0 and 1+ is not only critical but also challenging owing to HER2 heterogeneity and variability of observers. In this study, we aimed to increase the interpretation accuracy and consistency of HER2 IHC 0 and 1+ evaluation through assistance from an artificial intelligence (AI) algorithm. In addition, we examined the value of our AI algorithm in evaluating HER2 IHC scores in tumors with heterogeneity. AI-assisted interpretation consisted of AI algorithms and an augmenting reality module with a microscope. Fifteen pathologists (5 junior, 5 midlevel, and 5 senior) participated in this multi-institutional 2-round ring study that included 246 infiltrating duct carcinoma cases that were not otherwise specified. In round 1, pathologists analyzed 246 HER2 IHC slides by microscope without AI assistance. After a 2-week washout period, the pathologists read the same slides with AI algorithm assistance and rendered the definitive results by adjusting to the AI algorithm. The accuracy of interpretation accuracy with AI assistance (0.93 vs 0.80), thereby the evaluation precision of HER2 0 and the recall of HER2 1+. In addition, the AI algorithm improved the total consistency (intraclass correlation coefficient = 0.542-0.812), especially in HER2 1+ cases. In cases with heterogeneity, accuracy improved significantly (0.68 to 0.89) and to a similar level as in cases without heterogeneity (accuracy, 0.97). Both accuracy and consistency improved more for junior pathologists than those for the midlevel and senior pathologists. To the best of our knowledge, this is the first study to show that the accuracy and consistency of HER2 IHC 0 and 1+ evaluation and the accuracy of HER2 IHC evaluation in breast cancers with heterogeneity can be significantly improved using AI-assisted interpretation.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal , Humanos , Femenino , Neoplasias de la Mama/patología , Inteligencia Artificial , Receptor ErbB-2/genética , Algoritmos , Oncogenes
17.
Brain Behav Immun ; 113: 328-339, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543246

RESUMEN

Chronic morphine exposure causes the development of addictive behaviors, accompanied by an increase in neuroinflammation in the central nervous system. While previous researches have shown that astrocytes contribute to brain diseases, the role of astrocyte in morphine addiction through induced neuroinflammation remain unexplored. Here we show that morphine-induced inflammation requires the crosstalk among neuron, astrocyte, and microglia. Specifically, astrocytes respond to morphine-induced neuronal activation by increasing glycolytic metabolism. The dysregulation of glycolysis leads to an increased in the generation of mitochondrial reactive oxygen species and causes excessive mitochondrial fragmentation in astrocytes. These fragmented, dysfunctional mitochondria are consequently released into extracellular environment, leading to activation of microglia and release of inflammatory cytokines. We also found that blocking the nicotinamide adenine dinucleotide salvage pathway with FK866 could inhibit astrocytic glycolysis and restore the mitochondrial homeostasis and effectively attenuate neuroinflammatory responses. Importantly, FK866 reversed morphine-induced addictive behaviors in mice. In summary, our findings illustrate an essential role of astrocytic immunometabolism in morphine induced neural and behavioral plasticity, providing a novel insight into the interactions between neurons, astrocytes, and microglia in the brain affected by chronic morphine exposure.


Asunto(s)
Dependencia de Morfina , Ratones , Animales , Dependencia de Morfina/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Morfina/farmacología , Morfina/metabolismo , Microglía/metabolismo , Mitocondrias
18.
Anal Bioanal Chem ; 415(17): 3549-3558, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37219580

RESUMEN

Recently, many new types of cosmetic illegal additives have been screened in the market. Most of the new additives were new drugs or analogues with very similar structures to other prohibited additives, which were difficult to be identified by liquid chromatography-mass spectrometry (LC-MS) only. Therefore, a new strategy is proposed, which is chromatographic separation combined with nuclear magnetic resonance spectroscopy (NMR) structural identification. The suspected samples were screened by ultra-high-performance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-TOF-MS), followed by purification and extraction through silica-gel column chromatography and preparative high-performance liquid chromatography (HPLC). Finally, the extracts were identified unambiguously by NMR as bimatoprost and latanoprost, which were identified to be new cosmetic illegal additives in eyelash serums in China. Meanwhile, bimatoprost and latanoprost were quantified by high-performance liquid chromatography tandem triple quadrupole mass spectrum (HPLC-QQQ-MS/MS). The quantitative method demonstrated good linearity in the range of approximately 0.25-50 ng/mL (R2 > 0.9992), with limit of detection (LOD) and limit of quantification (LOQ) values of 0.01 and 0.03 mg/kg, respectively. The accuracy, precision, and reproducibility were confirmed to be acceptable.


Asunto(s)
Cosméticos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Latanoprost , Bimatoprost , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética
19.
Surg Endosc ; 37(2): 871-880, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008639

RESUMEN

BACKGROUND: pT1b esophageal squamous cell carcinoma (ESCC) patients treated by endoscopic resection (ER) required additional treatment with surgical resection (SR) or chemoradiotherapy (CRT) according to 2020 Japan Gastroenterological Endoscopy Society (JGES) guideline. Given the evidences for this recommendation were largely based on small-size studies, our study collected 166 cases of ER-treated pT1b patients in order to investigate the efficacy of additional SR as compared to ER-alone treatment. METHODS: A multi-institutional retrospective study in China was conducted. The pT1b ESCC treated by ER + SR (n = 42) and ER-alone (n = 124) from 2007 to 2018 were recruited. Meanwhile, patients with positive lymphovascular invasion (LVI(+)) and/or with positive vertical margin (VM(+)) were put into high-risk group, and those with both VM(-) and LVI(-) were selected into low-risk group. The clinicopathological parameters, lymph node metastasis (LNM), and survival between ER + SR and ER-alone groups were analyzed. RESULTS: In high-risk group, concurrent LNM revealed in surgically resected specimens accounted for 52.6% cases in ER + SR group. After surgical removal, the incidence of post-resection LNM dropped down to 5.6%. However, in low-risk group, patients with ER + SR treatment did not exhibit any concurrent LNM in surgically resected specimens, and the incidence of their overall LNM was similar to that in ER-alone group (0% vs. 2.8%, p = 1.000). More importantly, these cases demonstrated significantly shorter overall survival (OS) than that in ER-alone group (81.8% and 100.0%, respectively, at 3 years; log-Rank: P = 0.010). CONCLUSIONS: For ER-treated pT1b patients in high-risk group, additional SR is strongly recommended. However, for those in low-risk group, additional SR does not generate much benefit for clearance of LNM, but brings harm to shorten their OS. Therefore, additional SR is not recommended for ER-treated pT1b patient in low-risk group.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Estudios Retrospectivos , Neoplasias Esofágicas/cirugía , Estadificación de Neoplasias , Endoscopía Gastrointestinal
20.
Proc Natl Acad Sci U S A ; 117(10): 5111-5112, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094171

RESUMEN

Do campaign contributions from oil and gas companies influence legislators to vote against the environment, or do these companies invest in legislators that have a proven antienvironmental voting record? Using 28 y of campaign contribution data, we find that evidence consistently supports the investment hypothesis: The more a given member of Congress votes against environmental policies, the more contributions they receive from oil and gas companies supporting their reelection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA