Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell Biochem ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801644

RESUMEN

Aberrant activation of the PI3K/AKT pathway is a driving factor in the development of prostate cancer. Therefore, inhibiting the function of the PI3K/AKT signaling pathway is a strategy for the treatment of prostate cancer. Ilicicolin C is an ascochlorin derivative isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501. Which has anti-inflammatory activity, but its activity against prostate cancer has not yet been elucidated. MTT assay, plate clone-formation assay, flow cytometry and real-time cell analysis technology were used to detect the effects of ilicicolin C on cell viability, proliferation, apoptosis and migration of prostate cancer cells. Molecular docking software and surface plasmon resonance technology were used to analyze the interaction between ilicicolin C and PI3K/AKT proteins. Western blot assay was performed to examine the changes in protein expression. Finally, QikProp software was used to simulate the process of ilicicolin C in vivo, and a zebrafish xenograft model was used to further verify the anti-prostate cancer activity of ilicicolin C in vivo. Ilicicolin C showed cytotoxic effects on prostate cancer cells, with the most significant effect on PC-3 cells. Ilicicolin C inhibited proliferation and migration of PC-3 cells. It could also block the cell cycle and induce apoptosis in PC-3 cells. In addition, ilicicolin C could bind to PI3K/AKT proteins. Furthermore, ilicicolin C inhibited the expression of PI3K, AKT and mTOR proteins and could also regulate the expression of downstream proteins in the PI3K/AKT/mTOR signaling pathway. Moreover, the calculations speculated that ilicicolin C was well absorbed orally, and the zebrafish xenograft model confirmed the in vivo anti-prostate cancer effect of ilicicolin C. Ilicicolin C emerges as a promising marine compound capable of inducing apoptosis of prostate cancer cells by counteracting the aberrant activation of PI3K/AKT/mTOR, suggesting that ilicicolin C may be a viable candidate for anti-prostate cancer drug development. These findings highlight the potential of ilicicolin C against prostate cancer and shed light on its mechanism of action.

2.
Mol Biol Rep ; 51(1): 653, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734766

RESUMEN

Prostate cancer is a malignant epithelial tumor of the prostate gland and is the most common malignant tumor of the male genitourinary system. Pharmacological therapies, including chemotherapy and androgen deprivation therapy, play a key role in the treatment of prostate cancer. However, drug resistance and side effects limit the use of these drugs and so there is a need for new drug therapies for prostate cancer patients. Flavonoids, with their wide range of sources and diverse biological activities, have attracted much attention in the field of anti-tumor drug screening. In 2016, at least 58 flavonoids were reported to have anti-prostate cancer activity. In recent years, six additional flavonoid compounds have been found to have anti-prostate cancer potential. In this review, we have collected a large amount of evidence on the anti-prostate cancer effects of these six flavonoids, including a large number of cellular experiments and a small number of preclinical animal experiments. In addition, we predicted their drug-forming properties using Schrödinger's QikProp software and ADMETlab due to the lack of in vivo pharmacokinetic data for the six compounds. In conclusion, this review has fully confirmed the anti-prostate cancer effects of these six flavonoids, summarized their mechanisms of action and predicted their druggability. It provides a reference for the further development of these compounds into anti-prostate cancer drugs.


Asunto(s)
Flavonoides , Neoplasias de la Próstata , Masculino , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Mar Drugs ; 22(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786609

RESUMEN

Two new cytochalasin derivatives, peniotrinins A (1) and B (2), three new citrinin derivatives, peniotrinins C-E (4, 5, 7), and one new tetramic acid derivative, peniotrinin F (12), along with nine structurally related known compounds, were isolated from the solid culture of Peniophora sp. SCSIO41203. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis, quantum chemical calculations, and the calculated ECD. Interestingly, 1 is the first example of a rare 6/5/5/5/6/13 hexacyclic cytochalasin. We screened the above compounds for their anti-prostate cancer activity and found that compound 3 had a significant anti-prostate cancer cell proliferation effect, while compounds 1 and 2 showed weak activity at 10 µM. We then confirmed that compound 3 exerts its anti-prostate cancer effect by inducing methuosis through transmission electron microscopy and cellular immunostaining, which suggested that compound 3 might be first reported as a potential anti-prostate methuosis inducer.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Masculino , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proliferación Celular/efectos de los fármacos , Citocalasinas/farmacología , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Organismos Acuáticos , Línea Celular Tumoral , Estructura Molecular
4.
Ecotoxicol Environ Saf ; 274: 116214, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489907

RESUMEN

OBJECTIVE: Deltamethrin (DLM) is a commonly used insecticide, which is harmful to many organs. Here, we explored the effects of chronic low-dose DLM residues on colon tissue and its potential mechanism. METHODS: The mice were given long-term low-dose DLM by intragastric administration, and the body weights and disease activity index (DAI) scores of the mice were regularly recorded. The colon tissues were then collected for hematoxylin-eosin, immunofluorescence and immunohistochemistry staining. Besides, the RNA sequencing was performed to explore the potential mechanism. RESULTS: Our results showed that long-term exposure to low-dose DLM could cause inflammation in mice colon tissue, manifested as weight loss, increased DAI score, increased apoptosis of colonic epithelial cells, and increased infiltration of inflammatory cells. However, we observed that after long-term exposure to DLM and withdrawal for a period of time, although apoptosis was restored, the recovery of colon inflammation was not ideal. Subsequently, we performed RNA sequencing and found that long-term DLM exposure could lead to the senescence of some cells in mice colon tissue. The results of staining of cellular senescence markers in colon tissue showed that the level of cellular senescence in the DLM group was significantly increased, and the p53 signalling related to senescence was also significantly activated, indicating that cellular senescence played a key role in DLM-induced colitis. We further treated mice with quercetin (QUE) after long-term DLM exposure, and found that QUE could indeed alleviate DLM-induced colitis. In addition, we observed that long-term accumulation of DLM could aggravate DSS-induced colitis in mice, and QUE treatment could reverse this scenario. CONCLUSION: Continuous intake of DLM caused chronic colitis in mice, and the inflammation persisted even after discontinuation of DLM intake. This was attributed to the induction of cellular senescence in colon tissue. Treatment with QUE alleviated DLM-induced colitis by reducing cellular senescence. Long-term DLM exposure also aggravated DSS-induced colitis, which could be mitigated by QUE treatment.


Asunto(s)
Colitis , Nitrilos , Piretrinas , Ratones , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/inducido químicamente , Senescencia Celular , Ratones Endogámicos C57BL
5.
J Environ Manage ; 360: 121229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796866

RESUMEN

China proposed establishing a carbon emission trading market in its 12th Five-Year Plan to reduce carbon dioxide emissions through market mechanisms, promote the development of science and technology and help China become an environment-friendly country. To examine the impact of carbon emission trading on green technology innovation in Chinese energy enterprises, data from 1993 to 2020 were collected from 494 A-share-listed energy enterprises. Enterprises located in the pilot area of carbon emissions trading were assigned to the treatment group, while those in the non-pilot area were assigned to the control group. The propensity-score-matching method was utilized to match the treatment group with the control group, and the resulting samples were used as the actual sample data. The difference-in-differences method was then employed to assess the net impact of carbon emission trading and investigate its effect on green technology innovation in energy enterprises. This empirical study suggested that carbon emission trading has a positive impact on green technology innovation in energy enterprises, particularly state-owned ones. Larger enterprises are more willing to engage in green technological innovation than small enterprises. Furthermore, when faced with a carbon emission trading system, 'mature' companies tend to pay more attention to green technology innovation than younger enterprises do. This study puts forward policy measures for establishing a national-level carbon emission market in China in the future.


Asunto(s)
Dióxido de Carbono , China , Dióxido de Carbono/análisis , Carbono/análisis , Tecnología , Invenciones
6.
Cell Immunol ; 386: 104706, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931054

RESUMEN

Immune checkpoint blockade (ICB) therapies, such as monoclonal antibodies against the PD-1/PD-L1 immune checkpoint pathway, have been a major breakthrough in the treatment of lung cancer especially lung adenocarcinoma (LUAD), but their effectiveness is limited. High expression of PD-L1 in tumor cells is one of the key reasons evading immune surveillance, yet the mechanisms that regulate PD-L1 expression are not fully understood. By analyzing the chromatin immunoprecipitation sequencing data of MYC-associated X-factor (MAX) based on lung cancer cell lines, we found that the transcriptional regulator MAX is able to bind to the promoter region of the PD-L1 gene. Further, we performed several molecular biology experiments to determine that MAX promotes PD-L1 transcription in LUAD cells, which in turn assists LUAD cells to evade killing by CD8+ T cells, an effect that can be reversed by anti-PD-L1 antibody. In LUAD, the expression of MAX is positively correlated with PD-L1 and the infiltration of CD8+ T cells. Importantly, we further identified that high expression of the MAX/PD-L1 axis is associated with poor overall survival and fist progression of patients with LUAD. Thus, this study sheds light on the mechanism by which MAX inhibits CD8+ T cell-mediated killing of LUAD cells by activating PD-L1 transcription, and MAX may serve as a potential combinatorial target for ICB therapies that block the PD-1/PD-L1 pathway in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Inmunoterapia , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo
7.
Bioorg Chem ; 132: 106357, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642018

RESUMEN

Guided by Global Natural Products Social molecular networking, 14 new p-terphenyl derivatives, asperterphenyls A-N (1-14), together with 20 known p-terphenyl derivatives (15-34), were obtained from a sponge derived fungus Aspergillus sp. SCSIO41315. Among them, new compounds 2-8 and 15-17 were ten pairs of enantiomers. Comprehensive methods such as chiral-phase HPLC analysis, ECD calculations and X-ray diffraction analysis were applied to determine the absolute configurations. Asperterphenyls B (2) and C (3) represented the first reported natural p-terphenyl derivatives possessing a dicarboxylic acid system. Asperterphenyl A (1) displayed neuraminidase inhibitory activity with an IC50 value of 1.77 ± 0.53 µM and could efficiently inhibit infection of multiple strains of H1N1 with IC50 values from 0.67 ± 0.28 to 1.48 ± 0.60 µM through decreasing viral plaque formation in a dose-dependent manner, which suggested that asperterphenyl A (1) might be exploited as a potential antiviral compound in the pharmaceutical fields.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Compuestos de Terfenilo , Neuraminidasa , Hongos , Aspergillus , Cristalografía por Rayos X , Compuestos de Terfenilo/farmacología , Estructura Molecular
8.
Ecotoxicol Environ Saf ; 264: 115475, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714033

RESUMEN

OBJECTIVE: To date, it is unclear whether deltamethrin (DLM) intake causes damage to colon tissue. Hence, in this study, we aimed to clarify the effect of long-term exposure to low-dose DLM on colon tissues, and its potential mechanisms. METHODS: Mice were treated with DLM (0.2 mg/kg/day) or DLM combined with N-acetyl-l-cysteine (NAC) (50 mg/kg/day) for 8 weeks. Human colon cancer cells (HCT-116) were treated with DLM (0, 25, 50, or 100 µM), NAC (2 mM), or overexpression plasmids targeting peroxiredoxin 1 (PRDX1) for 48 h. DLM was detected using a DLM rapid detection card. Colon injury was evaluated using haematoxylin and eosin staining and transmission electron microscopy. Apoptosis was determined using immunofluorescence staining (IF), western blotting (WB) and flow cytometry (FC) assays. MitoTracker, JC-1, and glutathione (GSH) detection were used to detect mitochondrial oxidative stress. Intestinal flora were identified by 16 S rDNA sequencing. RESULTS: DLM accumulation was detected in the colon tissue and faeces of mice following long-term intragastric administration. Interestingly, our results showed that, even at a low dose, long-term intake of DLM resulted in severe weight loss and decreased the disease activity index scores and colon length. The results of IF, WB, and FC showed that DLM induced apoptosis in the colon tissue and cells. MitoTracker, JC-1, and GSH assays showed that DLM increased mitochondrial stress in colonic epithelial cells. Mechanistic studies have shown that increased mitochondrial stress and apoptosis are mediated by PRDX1 inhibition. Further experiments showed that PRDX1 overexpression significantly reduced DLM-induced oxidative stress injury and apoptosis. In addition, we observed that chronic exposure to DLM altered the composition of the intestinal flora in mice, including an increase in Odoribacter and Bacteroides and a decrease in Lactobacillus. The gut microbial richness decreased after DLM exposure in mice. Supplementation with NAC both in vivo and in vitro alleviated DLM-induced oxidative stress injury, colonic epithelial cell apoptosis, and gut microbial dysbiosis. CONCLUSION: Chronic exposure to DLM, even at small doses, can cause damage to the colon tissue, which cannot be ignored. The production and use of pesticides such as DLM should be strictly regulated during agricultural production.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Disbiosis/inducido químicamente , Colon , Estrés Oxidativo , Acetilcisteína , Peroxirredoxinas/genética
9.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833967

RESUMEN

Docetaxel is a first-line chemotherapy drug used to treat advanced prostate cancer, but patients who have used it often face the challenges of drug resistance and side effects. Kaempferol is a naturally occurring flavonol; our previous studies have confirmed that it has excellent anti-prostate activity. To investigate the anti-prostate cancer effects of docetaxel in combination with kaempferol, we conducted experiments at the cellular and whole-animal level. Plate cloning assays showed that the combination of docetaxel and kaempferol had a synergistic effect in inhibiting the proliferation of prostate cancer cells. The combination of these two compounds was found to induce autophagy in prostate cancer cells via transmission electron microscopy, and changes in the expression of autophagy-related proteins via Western blot assays also confirmed the occurrence of autophagy at the molecular level. We also confirmed the anti-prostate cancer effect of docetaxel in combination with kaempferol in vivo by establishing a mouse xenograft prostate cancer model. Autophagy-related proteins were also examined in mouse tumor tissues and verified the presence of autophagy in mouse tumor tissues. The above cellular and animal data suggest that docetaxel in combination with kaempferol has significant anti-prostate cancer effects and that it works by inducing autophagy in cells.


Asunto(s)
Quempferoles , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Docetaxel/farmacología , Docetaxel/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Taxoides/farmacología , Taxoides/uso terapéutico , Neoplasias de la Próstata/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis
10.
Water Sci Technol ; 88(8): 1982-2001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37906454

RESUMEN

For the low efficiency and large loss of cascade pumping stations, aiming to maximize system efficiency, an optimized scheduling model of cascade pumping stations is established with consideration of multiple constraints, and the optimal scheduling method based on the improved sparrow search algorithm (BSSA) is proposed. The BSSA is initialized by the Bernoulli chaotic map to solve the insufficient initial diversity of the sparrow search algorithm (SSA). The random boundary strategy is introduced to avoid local optimum when dealing with the scheduling problem of pumping stations. The performance and improvement strategy of BSSA are verified by eight benchmark functions. Results show that BSSA has better convergence accuracy and faster speed. BSSA is applied to a three-stage pumping station considering three flow conditions, and compared with the current scheme, particle swarm optimization and genetic algorithm optimization schemes, the operation efficiency of SSA can be increased by 0.72-0.96%, and operation cost can be reduced by ¥263,000/a-¥363,300/a. On this basis, the improvement of 0.04-0.30% and ¥14,800/a-¥109,900/a can be further achieved by the BSSA, which confirms the feasibility and effectiveness of BSSA to solve the pumping station optimal scheduling problem. The findings present useful reference for the optimized scheduling of pumping station system.


Asunto(s)
Algoritmos , Benchmarking , Agua Subterránea
11.
Mol Biol Rep ; 49(6): 4607-4617, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35286519

RESUMEN

PURPOSE: Kaempferol is a natural flavonoid that has been reported to be active against many cancers, including prostate cancer, breast cancer and colon cancer. In our previous study, we found kaempferol could act as a selective androgen receptor modulator, thereby suppress development of benign prostatic hyperplasia. This finding inspired us to further explore the effect and the mechanism of action of kaempferol on prostate cancer. METHODS: Plate clone formation assay was performed to detect the effect of kaempferol on cell proliferation. Flow cytometry was used to detect the impact of kaempferol on cell apoptosis and cell cycle distribution. qPCR, immunofluorescence staining, and enzyme-linked immunosorbent assay were used to detect the expression of gene and protein of Ki67 which is a biomarker of cell proliferation. RESULTS: In the present study, we found kaempferol could dramatically suppress androgen-dependent and androgen-independent prostate cancer cells proliferation and induce their apoptosis. Furthermore, we found that kaempferol induced cell cycle to be arrested at G1 phase in 22Rv1 cells but at S and G2 phase in PC-3 cells. In addition, we detected the mRNA and protein of Ki67 which is corresponding to the cell proliferation and found that kaempferol could significantly inhibit Ki67 expression at mRNA level but increase its expression at protein levels in both androgen-dependent and androgen-independent prostate cancer cells. CONCLUSION: Taken together, kaempferol inhibited the proliferation of androgen-dependent and androgen-independent prostate cancer cells by regulating the expression of Ki67. These findings further shed light on the mechanism of action of kaempferol on anti-prostate cancer.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Andrógenos/metabolismo , Andrógenos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Quempferoles/farmacología , Antígeno Ki-67/genética , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
12.
Mar Drugs ; 21(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36662205

RESUMEN

Two new chlorinated metabolites, 8-chlorine-5-hydroxy-2,3-dimethyl-7-methoxychromone (1) and 3,4-dichloro-1H-pyrrole-2,5-dione (3), and eight known compounds (2 and 4-9) were isolated from the mangrove sediments-derived fungus Mollisia sp. SCSIO41409. Their structures were elucidated by physicochemical properties and extensive spectroscopic analysis. The absolute configuration of stemphone C (4) was established for the first time by the X-ray crystallographic analysis. Compounds 3 and 4 showed different intensity of antimicrobial activities against several pathogenic fungi and bacteria, and antiproliferative activities against two human prostate cancer cell lines (IC50 values 2.77 to 9.60 µM). Further, stemphone C (4) showed a reducing PC-3 cell colony formation, inducing apoptosis and blocking the cell cycle at S-phase in a dose-dependent manner; thus, it could be considered as a potential antiproliferative agent and a promising anti-prostate cancer lead compound.


Asunto(s)
Ascomicetos , Humanos , Ascomicetos/química , Análisis Espectral , Cristalografía por Rayos X , Línea Celular , Estructura Molecular
13.
Molecules ; 27(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684384

RESUMEN

Prostate cancer is a common cancer in elderly males. Significant progress has been made in the drug therapies for prostate cancer in recent years. However, side effects are still problems that have not been overcome by the currently used anti-prostate cancer drugs. Novel technologies can be applied to reduce or even eliminate the side effects of drugs. An aptamer may be a sequence of nucleic acids or peptides that can specifically recognize proteins or cells. Taking advantage of this feature, scientists have designed aptamer-drug delivery systems for the development of anti-prostate cancer agents. Theoretically, these aptamer-drug delivery systems can specifically recognize prostate cancer cells and then induce cell death without attacking normal cells. We collected the relevant literature in this field and found that at least nine compounds have been prepared as aptamer-drug delivery systems to evaluate their precise anti-prostate cancer effects. However, the currently studied aptamer-drug delivery systems have not yet entered the market due to defects. Here, we analyze the published data, summarize the characteristics of these delivery systems, and propose ways to promote their application, thus promoting the development of the aptamer-drug delivery systems against prostate cancer.


Asunto(s)
Antineoplásicos , Aptámeros de Nucleótidos , Neoplasias de la Próstata , Anciano , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Péptidos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico
14.
Molecules ; 27(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335187

RESUMEN

Two undescribed cytochalasins, emeriglobosins A (1) and B (2), together with nine previously reported analogues (3-11) and two known tetramic acid derivatives (12, 13) were isolated from the solid culture of Emericellopsis sp. SCSIO41202. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis and the calculated ECD. Some of the isolated compounds were evaluated for their cytotoxicity and enzyme inhibitory activity against acetylcholinesterase (AChE) in vitro. Among them, 8 showed potent AChE inhibitory activity, with an IC50 value of 1.31 µM, and 5 showed significant cytotoxicity against PC-3 cells, with an IC50 value of 2.32 µM.


Asunto(s)
Acetilcolinesterasa , Hypocreales , Acetilcolinesterasa/química , Alcaloides Indólicos/farmacología , Estructura Molecular
15.
J Dairy Sci ; 99(1): 89-103, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26547656

RESUMEN

Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits.


Asunto(s)
Proteínas Bacterianas/genética , Lactobacillus delbrueckii/genética , Leche/química , Yogur/análisis , Animales , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Fermentación , Lactobacillus delbrueckii/clasificación , Lactobacillus delbrueckii/metabolismo , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Gusto
16.
Nat Prod Res ; : 1-8, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853392

RESUMEN

Chemical investigation of the EtOAc extract of a deep-sea derived fungus Aspergillus sp. SCSIO41032 resulted in the isolation of ten known compounds, including eight aspochalasins. Their structures were elucidated by using extensive NMR spectroscopic, mass spectrometric and single crystal X-ray diffraction analysis. The detailed crystallographic data for structures 1, 2, and 4, along with the relative configurations of aspochalasin E (3) determined by its acetonide derivative were reported for the first time. The results of antitumor and antiviral activities showed that 3 displayed moderate antitumor activities against 22Rv1, PC-3, A549, and HCT-15 cell lines with IC50 values ranged from 5.9 ± 0.8 to 19.0 ± 7.7 µM, and 9 exhibited moderate antiviral activities against HSV-1/2 with EC50 values of 9.5 ± 0.5 and 5.4 ± 0.6 µM, respectively. Plate clone formation assays results indicated that 3 inhibited the 22Rv1, PC-3 cells growth in a dose-dependent manner.

17.
Phytomedicine ; 129: 155656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723529

RESUMEN

BACKGROUND: Gemcitabine is the first-line chemotherapy drug that can easily cause chemotherapy resistance. Huaier is a traditional Chinese medicine and shows an antitumor effect in pancreatic cancer, but whether it can enhance the gemcitabine chemotherapeutic response and the potential mechanism remain unknown. PURPOSE: This study was performed to explore the effect of Huaier in promoting the tumor-killing effect of gemcitabine and elucidate the possible mechanism in pancreatic cancer. METHODS: Cell Counting Kit-8 assays and colony formation assays were used to detect proliferation after different treatments. Protein coimmunoprecipitation was applied to demonstrate protein interactions. Nuclear protein extraction and immunofluorescence were used to confirm the intracellular localization of the proteins. Western blotting was performed to detect cell proliferation-related protein expression or cancer stem cell-associated protein expression. Sphere formation assays and flow cytometry were used to assess the stemness of pancreatic cancer cells. The in vivo xenograft model was used to confirm the inhibitory effect under physiological conditions, and immunohistochemistry was used to detect protein expression. RESULTS: Huaier suppressed the proliferation and stem cell-like properties of pancreatic cancer cells. We found that Huaier suppressed the expression of forkhead box protein M1 (FoxM1). In addition, Huaier inhibited FoxM1 function by blocking its nuclear translocation. Treatment with Huaier reversed the stemness induced by gemcitabine in a FoxM1-dependent manner. Furthermore, we verified the above results by an in vivo study, which reached the same conclusion as those in vitro. CONCLUSION: Overall, this study illustrates that Huaier augments the tumor-killing effect of gemcitabine through suppressing the stemness induced by gemcitabine in a FoxM1-dependent way. These results indicate that Huaier can be applied to overcome gemcitabine resistance.


Asunto(s)
Proliferación Celular , Desoxicitidina , Proteína Forkhead Box M1 , Gemcitabina , Ratones Desnudos , Células Madre Neoplásicas , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Proteína Forkhead Box M1/metabolismo , Humanos , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología , Mezclas Complejas , Trametes
18.
Crit Rev Oncol Hematol ; 191: 104142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742885

RESUMEN

Glioblastomas are primary brain tumors that originate from glial stem cells or progenitor cells. There is a large difference in the incidence of glioblastoma between males and females. Studies revealed that the gender differences in the tumor may be attributable to the androgen receptor signaling axis. The incidence rate of glioblastoma in men is higher than that in women. Aberrant activation of the androgen receptor signaling pathway, or interactions between the androgen receptor signaling axis and other signaling axes promote the development of glioblastoma. Therefore, targeting the androgen receptor holds promise as a therapeutic approach for glioblastoma. This review investigates the dynamics of drug research into the treatment of glioblastoma by targeting the androgen receptor. The first finding in line with expectations is that androgen receptor antagonists, represented by enzalutamide, have been studied and shown to have anti-glioblastoma effects. In addition, it was found that the combination of 5-alpha reductase inhibitors and androgen receptor antagonists resulted in better therapeutic outcomes than each of them alone. Similar results were obtained with the combination of an epidermal growth factor receptor inhibitor and an androgen receptor antagonist. In addition, four small molecule compounds have been shown to exert significant anti-glioblastoma effects by directly or indirectly targeting the androgen receptor. Expectantly, one of these small molecules, seviteronel, progressed to the phase II clinical trial stage. These findings suggest that targeting the androgen receptor for glioblastoma may be a promising therapeutic option.

19.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37513864

RESUMEN

Rheumatoid arthritis is an inflammatory disease, and pyroptosis is a form of death associated with an inflammatory response. Pyroptosis, which occurs in synovial and osteoblastic cells, can exacerbate the development of rheumatoid arthritis. The inhibition of pyroptosis of these cells can, therefore, clearly be used as a therapeutic strategy against rheumatoid arthritis. Here, we have summarized the current status of progress in the treatment of rheumatoid arthritis by targeting cellular pyroptosis. We have identified seven compounds, including a cyclic RNA, a microRNA, a peptide, and a cytokine (protein), that may influence the progression of rheumatoid arthritis by regulating the initiation of pyroptosis. All of these compounds have been shown to have anti-rheumatoid effects in vitro and/or in vivo and have the potential to be developed as anti-rheumatoid agents. These findings may help to accelerate the development of anti-rheumatoid arthritis drugs.

20.
Environ Sci Pollut Res Int ; 30(16): 46336-46354, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36717412

RESUMEN

China's power sector must cut its carbon emissions by 90% by 2060 to become carbon neutral. Green finance, as a crucial link in sustainable development, is garnering attention for its role as a mechanism for the green transformation of power enterprises. The process of green transformation development is highly challenging and requires a lot of financial support. This paper discusses the design of schemes for fiscal and financial support mechanisms for the green transformation of power enterprises, financing mechanisms to strengthen green finance, and financial support mechanisms to promote carbon trading. The utilization of green finance by power enterprises is assessed after defining the impact routes of green finance on clean energy power firms and highly polluting power firms. Using the SBM-GML model with variable returns to scale, the dynamic change of the use efficiency of green finance in power enterprises is calculated. At the same time, the enterprises are classified by power generation methods, and the changes in the power generation structure of power enterprises are analyzed. Compared with 2014, the total power generation in 2021 increased by 59.14%, wind power generation increased by 170.78%, and photovoltaic power generation increased by 974.31%. Hydropower, by contrast, grew by 94.14% and thermal power by only 45.09%. The results show that the evolution of total factor productivity and green total factor productivity of the 24 listed electric power enterprises is "M" shaped, that the main cause of the fluctuation is the serious phenomenon of "Triple Abandonments" of wind, light, and water in China's power industry, and that the main means to improve total factor productivity and green total factor productivity of the power industry is to improve green power production technology. Classified by power generation mode, it is found that hybrid power generation enterprises have the highest average efficiency value, followed by wind power generation. China's power enterprises are still dominated by thermal power generation; before the "Double Carbon" target, green power generation enterprises have not significantly improved the efficiency of green finance. The series of green finance mechanisms of action described in this study have a beneficial impact on the green transition of energy, according to a predictive analysis that combines existing policy objectives and practical mechanisms. Even without green financial support, the composition of China's major clean energy sources will account for 86.85% of total electricity generation by 2060, while with green financial support, coal generation will fall to 0% around 2056, with hydroelectric, wind, and photovoltaic generation accounting for 11.81%, 50.00%, and 38.19% of electricity sources, respectively, and green finance will drive important technological changes, and the "Triple Abandonments" phenomenon will be fundamentally corrected. Finally, countermeasures and suggestions for the healthy development of green finance in power enterprises are proposed based on the findings of the study.


Asunto(s)
Contaminación del Aire , Desarrollo Económico , Carbono , China , Carbón Mineral , Contaminación del Aire/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA