Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37315560

RESUMEN

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Asunto(s)
Osteomielitis , Receptores de Interleucina-1 , Ratones , Animales , Receptores de Interleucina-1/genética , Osteomielitis/tratamiento farmacológico , Osteomielitis/genética , Osteomielitis/patología , Inflamación/genética , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Transducción de Señal , Mutación
2.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191811

RESUMEN

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Asunto(s)
Ácidos Láuricos , Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Hígado/metabolismo , Ácidos Grasos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/farmacología
3.
Nature ; 610(7931): 308-312, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163288

RESUMEN

Exploring the subsurface structure and stratification of Mars advances our understanding of Martian geology, hydrological evolution and palaeoclimatic changes, and has been a main task for past and continuing Mars exploration missions1-10. Utopia Planitia, the smooth plains of volcanic and sedimentary strata that infilled the Utopia impact crater, has been a prime target for such exploration as it is inferred to have hosted an ancient ocean on Mars11-13. However, 45 years have passed since Viking-2 provided ground-based detection results. Here we report an in situ ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia conducted by the Zhurong rover of the Tianwen-1 mission. A detailed subsurface image profile is constructed along the roughly 1,171 m traverse of the rover, showing an approximately 70-m-thick, multi-layered structure below a less than 10-m-thick regolith. Although alternative models deserve further scrutiny, the new radar image suggests the occurrence of episodic hydraulic flooding sedimentation that is interpreted to represent the basin infilling of Utopia Planitia during the Late Hesperian to Amazonian. While no direct evidence for the existence of liquid water was found within the radar detection depth range, we cannot rule out the presence of saline ice in the subsurface of the landing area.

4.
Nucleic Acids Res ; 52(D1): D1121-D1130, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37843156

RESUMEN

Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.


Asunto(s)
Biomarcadores , Bases del Conocimiento , Animales , MicroARNs/genética , Proteínas , ARN Circular , ARN Largo no Codificante
5.
FASEB J ; 38(10): e23646, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38795328

RESUMEN

Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-ß-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3ß/ß-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.


Asunto(s)
Autofagia Mediada por Chaperones , Glucógeno Sintasa Quinasa 3 beta , Inflamación , Proteína 2 de la Membrana Asociada a los Lisosomas , Células Madre Mesenquimatosas , Osteogénesis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , beta Catenina , Animales , Osteogénesis/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Transducción de Señal , Masculino , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Diferenciación Celular , Osteoclastos/metabolismo
6.
Brain ; 147(4): 1571-1586, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37787182

RESUMEN

Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells. GPRASP1 loss-of-function caused endothelial dysfunction in vitro and in vivo. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral haemorrhage, AVMs and exhibited vascular anomalies in multiple organs. GPR4 was identified to be an effective GPCR binding with GPRASP1 to develop endothelial disorders. GPRASP1 deletion activated GPR4/cAMP/MAPK signalling to disturb endothelial functions, thus contributing to vascular anomalies. Mechanistically, GPRASP1 promoted GPR4 degradation. GPRASP1 enabled GPR4 K63-linked ubiquitination, enhancing the binding of GPR4 and RABGEF1 to activate RAB5 for conversions from endocytic vesicles to endosomes, and subsequently increasing the interactions of GPR4 and ESCRT members to package GPR4 into multivesicular bodies or late endosomes for lysosome degradation. Notably, the GPR4 antagonist NE 52-QQ57 and JNK inhibitor SP600125 effectively rescued the vascular phenotype caused by endothelial Gprasp1 deletion. Our findings provided novel insights into the roles of GPRASP1 in AVMs and hinted at new therapeutic strategies.


Asunto(s)
Malformaciones Arteriovenosas , Malformaciones Arteriovenosas Intracraneales , Animales , Humanos , Ratones , Malformaciones Arteriovenosas/genética , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/metabolismo , Ratones Noqueados , Receptores Acoplados a Proteínas G
7.
Proc Natl Acad Sci U S A ; 119(45): e2208505119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322772

RESUMEN

The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet, and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 K and 9 T, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation [Formula: see text], with B being the applied magnetic field and [Formula: see text] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides experimental evidence of Berry curvature-induced LPMR but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage.

8.
J Biol Chem ; 299(6): 104738, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086786

RESUMEN

O-linked GlcNAc (O-GlcNAc) is an emerging post-translation modification that couples metabolism with cellular signal transduction by crosstalk with phosphorylation and ubiquitination to orchestrate various biological processes. The mechanisms underlying the involvement of O-GlcNAc modifications in N6-methyladenosine (m6A) regulation are not fully characterized. Herein, we show that O-GlcNAc modifies the m6A mRNA reader YTH domain family 1 (YTHDF1) and fine-tunes its nuclear translocation by the exportin protein Crm1. First, we present evidence that YTHDF1 interacts with the sole O-GlcNAc transferase (OGT). Second, we verified Ser196/Ser197/Ser198 as the YTHDF1 O-GlcNAcylation sites, as described in numerous chemoproteomic studies. Then we constructed the O-GlcNAc-deficient YTHDF1-S196A/S197F/S198A (AFA) mutant, which significantly attenuated O-GlcNAc signals. Moreover, we revealed that YTHDF1 is a nucleocytoplasmic protein, whose nuclear export is mediated by Crm1. Furthermore, O-GlcNAcylation increases the cytosolic portion of YTHDF1 by enhancing binding with Crm1, thus upregulating downstream target (e.g. c-Myc) expression. Molecular dynamics simulations suggest that O-GlcNAcylation at S197 promotes the binding between the nuclear export signal motif and Crm1 through increasing hydrogen bonding. Mouse xenograft assays further demonstrate that YTHDF1-AFA mutants decreased the colon cancer mass and size via decreasing c-Myc expression. In sum, we found that YTHDF1 is a nucleocytoplasmic protein, whose cytosolic localization is dependent on O-GlcNAc modification. We propose that the OGT-YTHDF1-c-Myc axis underlies colorectal cancer tumorigenesis.


Asunto(s)
Neoplasias Colorrectales , Procesamiento Proteico-Postraduccional , Ratones , Animales , Humanos , Fosforilación , Ubiquitinación , Carcinogénesis/genética , Neoplasias Colorrectales/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Cell Tissue Res ; 396(2): 269-281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470494

RESUMEN

Nonunion is a challenging complication of fractures for the surgeon. Recently the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum protein retention receptor 2 (KDELR2) has been found that involved in osteogenesis imperfecta. However, the exact mechanism is still unclear. In this study, we used lentivirus infection and mouse fracture model to investigate the role of KDELR2 in osteogenesis. Our results showed that KDELR2 knockdown inhibited the osteogenic differentiation of mBMSCs, whereas KDELR2 overexpression had the opposite effect. Furthermore, the levels of active-ß-catenin and phospho-GSK3ß (Ser9) were upregulated by KDELR2 overexpression and downregulated by KDELR2 knockdown. In the fracture model, mBMSCs overexpressing KDELR2 promoted healing. In conclusion, KDELR2 promotes the osteogenesis of mBMSCs by regulating the GSK3ß/ß-catenin signaling pathway.


Asunto(s)
Diferenciación Celular , Glucógeno Sintasa Quinasa 3 beta , Células Madre Mesenquimatosas , Osteogénesis , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Transducción de Señal
10.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738410

RESUMEN

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantones/metabolismo , Cotiledón/metabolismo , Etiolado , Glucosa/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
FASEB J ; 37(7): e22967, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269155

RESUMEN

Neutrophils participate in the pathogenesis of ulcerative colitis (UC) through regulating the intestinal homeostasis. Several inflammatory diseases are reported to be regulated by proline-rich tyrosine kinase 2B (PTK2B). However, the role of PTK2B in regulating the function of neutrophils and the pathogenesis of UC remains unknown. In this study, the mRNA and protein levels of PTK2B in the colonic tissues from UC patients were measured by using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. TAE226, a PTK2B inhibitor, was used to inhibit the activity of PTK2B in neutrophils, and then, the pro-inflammatory factors were analyzed by using qRT-PCR and ELISA. To determine the role of PTK2B in intestinal inflammation, a dextran sulfate sodium (DSS)-induced colitis model was established in PTK2B gene knockout (PTK2B KO) and wild-type (WT) mice. We found that compared with healthy donor controls, the expression level of PTK2B was significantly elevated in inflamed mucosa from UC patients. In addition, expression of PTK2B was positively correlated with the severity of disease. Pharmacological inhibition of PTK2B could markedly reduce the generation of reactive oxygen species (ROS), myeloperoxidase (MPO), and antimicrobial peptides (S100a8 and S100a9) in neutrophils. The vitro study showed that tumor necrosis factor (TNF)-α is involved in promoting the expression of PTK2B in neutrophils. As expected, UC patients treated with infliximab, an anti-TNF-α agent, showed significantly reduced level of PTK2B in neutrophils, as well as in the intestinal mucosa. Of note, compared with DSS-treated WT mice, DSS-treated PTK2B KO mice showed more severe colitis symptoms. Mechanistically, PTK2B could enhance neutrophil migration by regulating CXCR2 and GRK2 expression via the p38 MAPK pathway. Additionally, mice treated with TAE226 exhibited the same effects. In conclusion, PTK2B is involved in the pathogenesis of UC by promoting the migration of neutrophils and inhibiting mucosal inflammation, highlighting PTK2B as a new potential therapeutic target to treat UC.


Asunto(s)
Colitis Ulcerosa , Quinasa 2 de Adhesión Focal , Animales , Ratones , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Inmunidad , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Neutrófilos/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Humanos
12.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698267

RESUMEN

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Asunto(s)
Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Puccinia/genética , Resistencia a la Enfermedad/genética , Ontología de Genes , Regulación de la Expresión Génica de las Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
13.
Mol Cell Biochem ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492158

RESUMEN

Colorectal cancer (CRC), a digestive tract malignancy with high mortality and morbidity, lacks effective biomarkers for clinical prognosis due to its complex molecular pathogenesis. Nucleotide binding protein 2 (NUBP2) plays a vital role in the assembly of cytosolic Fe/S protein and has been implicated in cancer progression. In this study, we found that NUBP2 was highly expressed in CRC by TCGA database analysis. Subsequently, we verified the expression of NUBP2 in CRC tumor tissues and para-carcinoma tissues using IHC staining, and further investigated its association with clinicopathological parameters. In vitro cell experiments were conducted to assess the role of NUBP2 in CRC by evaluating cell proliferation, migration, and apoptosis upon NUBP2 dysregulation. Furthermore, we established a subcutaneous CRC model to evaluate the impact of NUBP2 on tumor growth in vivo. Additionally, we performed mechanistic exploration using a Human Phospho-Kinase Array-Membrane. Our results showed higher expression of NUBP2 in CRC tissues, which positively correlated with the pathological stage, indicating its involvement in tumor malignancy. Functional studies demonstrated that NUBP2 knockdown reduced cell proliferation, increased apoptosis, and impaired migration ability. Moreover, NUBP2 knockdown inhibited tumor growth in mice. We also observed significant changes in the phosphorylation level of GSK3ß upon NUBP2 knockdown or overexpression. Additionally, treatment with CHIR-99021 HCl, an inhibitor of GSK3ß, reversed the malignant phenotype induced by NUBP2 overexpression. Overall, this study elucidated the functional role of NUBP2 in CRC progression both in vitro and in vivo, providing insights into the molecular mechanisms underlying CRC and potential implications for targeted therapeutic strategies.

14.
Liver Int ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963300

RESUMEN

BACKGROUND AND AIMS: Liver injury is one of the common complications of paraquat (PQ) poisoning, but whether the degree of liver injury is related to patient prognosis is still controversial. This study aimed to investigate whether liver injury was a risk factor for death in PQ-poisoned patients. METHODS: We conducted a retrospective cohort study of PQ-poisoned patients from the past 10 years (2011-2020) from a large tertiary academic medical centre in China. PQ-poisoned patients were divided into a normal liver function group (n = 580) and a liver injury group (n = 60). Propensity score matching (PSM) analysis was then performed. RESULTS: A total of 640 patients with PQ poisoning were included in this study. To reduce the impact of bias, dose of PQ, urinary PQ concentration and time from poisoning to hospital admission were matched between the two groups. A 3:1 PSM analysis was performed, ultimately including 240 patients. Compared with the normal liver function group, patients in the liver injury group were older, had a higher R value ([ALT/ULN]/[ALP/ULN]) (p < .001) and had a higher mortality rate. Cox regression analysis showed that there was no significant association between alanine aminotransferase, alkaline phosphatase, total bilirubin levels and hazard of death, but age, PQ dose, creatine kinase isoenzyme, creatine kinase, white blood cell count, neutrophil percentage and lymphocyte percentage were associated with mortality in patients with PQ poisoning. CONCLUSIONS: The occurrence of liver injury within 48 h after PQ poisoning was a risk factor for mortality, and such liver injury was likely of a hepatocellular nature. Age, PQ dose, creatine kinase isoenzyme and white blood cell count were positively correlated with mortality, while creatine kinase, percentage of neutrophils and lymphocytes were inversely correlated.

15.
J Chem Inf Model ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921627

RESUMEN

Toll-like receptor 4 (TLR4) is pivotal as an innate immune receptor, playing a critical role in mediating neuropathic pain and drug addiction through its regulation of the neuroinflammatory response. The nonclassical (+)-opioid isomers represent a unique subset of TLR4 antagonists known for their effective blood-brain barrier permeability. Despite growing interest in the structure-activity relationship of these (+)-opioid-based TLR4 antagonists, the specific impact of heteroatoms on their TLR4 antagonistic activities has not been fully explored. This study investigated the influence of the hydroxyl group at C14 in six (+)-opioid TLR4 antagonists (1-6) using wet-lab experiments and in silico simulations. The corresponding C14-deoxy derivatives (7-12) were synthesized, and upon comparison with their corresponding counterparts (1-6), it was discovered that their TLR4 antagonistic activities were significantly diminished. Molecular dynamics simulations showed that the (+)-opioid TLR4 antagonists (1-6) possessed more negative binding free energies to the TLR4 coreceptor MD2, which was responsible for ligand recognition. This was primarily attributed to the formation of a hydrogen bond between the hydroxyl group at the C-14 position of the antagonists (1-6) and the R90 residue of MD2 during the binding process. Such an interaction facilitated the entry and subsequent binding of these molecules within the MD2 cavity. In contrast, the C14-deoxy derivatives (7-12), lacking the hydroxyl group at the C-14 position, missed this crucial hydrogen bond interaction with the R90 residue of MD2, leading to their egression from the MD2 cavity during simulations. This study underscores the significant role of the C14 hydroxyl moiety in enhancing the effectiveness of (+)-opioid TLR4 antagonists, which provides insightful guidance for designing future (+)-isomer opioid-derived TLR4 antagonists.

16.
Environ Sci Technol ; 58(4): 1966-1975, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38153028

RESUMEN

Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.


Asunto(s)
Quitinasas , Aguas del Alcantarillado , Amino Azúcares , Fermentación , Ácido N-Acetilneuramínico , Quitina/química , Quitina/metabolismo , Polisacáridos , Quitinasas/química , Quitinasas/metabolismo , Metano
17.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330848

RESUMEN

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Apoptosis , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Piridinas/farmacología
18.
Brain ; 146(9): 3634-3647, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995941

RESUMEN

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Proto-Oncogénicas , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Mutación/genética , Fenotipo , Médula Espinal/patología
19.
Phys Chem Chem Phys ; 26(8): 6616-6626, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38344839

RESUMEN

Metal-organic framework compounds are extensively utilized in various fields, such as electrode materials, owing to their distinctive porous structure and significant specific surface area. In this study, NiCoAl-MOF metal-organic framework precursors were synthesized by a solvothermal method, and NiAl2O4/NiCo2O4 electrode materials were prepared by the subsequent calcination of the precursor. These materials were characterized by XRD, XPS, BET tests, and SEM, and the electrochemical properties of the electrode materials were tested by CV and GCD methods. BET tests showed that NiAl2O4/NiCo2O4 has an abundant porous structure and a large specific surface area of up to 105 m2 g-1. The specific capacitance of NiAl2O4/NiCo2O4 measured by the GCD method reaches up to 2870.83 F g-1 at a current density of 1 A g-1. The asymmetric supercapacitor NiAl2O4/NiCo2O4//AC assembled with activated carbon electrodes has a maximum energy density of 166.98 W h kg-1 and a power density of 750.00 W kg-1 within a voltage window of 1.5 V. In addition, NiAl2O4/NiCo2O4 materials have good cycling stability. These advantages make it a good candidate for the application of high-performance supercapacitors.

20.
Phys Chem Chem Phys ; 26(12): 9309-9316, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38426248

RESUMEN

Toll-like receptor 4 (TLR4) is a pivotal innate immune recognition receptor that regulates intricate signaling pathways within the immune system. Neoseptin-3 (Neo-3), a recently identified small-molecule agonist for mouse TLR4/MD2, exhibits chiral recognition properties. Specifically, the L-enantiomer of Neo-3 (L-Neo-3) effectively activates the TLR4 signaling pathway, while D-Neo-3 fails to induce TLR4 activation. However, the underlying mechanism by which TLR4 enantioselectively recognizes Neo-3 enantiomers remains poorly understood. In this study, in silico simulations were performed to investigate the mechanism of chiral recognition of Neo-3 enantiomers by TLR4/MD2. Two L-Neo-3 molecules stably resided within the cavity of MD2 as a dimer, and the L-Neo-3 binding stabilized the (TLR4/MD2)2 dimerization state. However, the strong electrostatic repulsion between the hydrogen atoms on the chiral carbon of D-Neo-3 molecules caused the relative positions of two D-Neo-3 molecules to continuously shift during the simulation process, thus preventing the formation of D-Neo-3 dimer as well as their stable interactions with the surrounding residues in (TLR4/MD2)2. Considering that L-Neo-3 could not sustain a stable dimeric state in the bulk aqueous environment, it is unlikely that L-Neo-3 entered the cavity of MD2 as a dimeric unit. Umbrella sampling simulations revealed that the second L-Neo-3 molecule entering the cavity of MD2 exhibited a lower binding energy (-25.75 kcal mol-1) than that of the first L-Neo-3 molecule (-14.31 kcal mol-1). These results imply that two L-Neo-3 molecules enter the cavity of MD2 sequentially, with the binding of the first L-Neo-3 molecule facilitating the entry of the second one. This study dissects the binding process of Neo-3 enantiomers, offering a comprehensive understanding of the atomic-level mechanism underlying TLR4's chiral recognition of Neo-3 molecules.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Toll-Like 4 , Ratones , Animales , Antígeno 96 de los Linfocitos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA