Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2219435120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276410

RESUMEN

M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.


Asunto(s)
Muerte Celular Autofágica , Infecciones Estreptocócicas , Streptococcus equi , Humanos , Animales , Ratones , Barrera Hematoencefálica , Antígenos Bacterianos , Streptococcus , Células Endoteliales
2.
Am J Respir Cell Mol Biol ; 70(5): 351-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271683

RESUMEN

N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The FTO (fat mass and obesity-associated) protein can regulate mRNA metabolism by removing m6A residues. The aim of this study was to examine the role and mechanism of the m6A demethylase FTO in LPS-induced ALI. Lung epithelial FTO-knockout mice and FTO-knockdown/overexpression human alveolar epithelial (A549) cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification amounts were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue edema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, whereas FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Células Epiteliales Alveolares , Proteínas Portadoras , Lipopolisacáridos , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Humanos , Lipopolisacáridos/farmacología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Piroptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Células A549 , Ratones Endogámicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Masculino , Transducción de Señal
3.
Lab Invest ; 104(2): 100268, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37898292

RESUMEN

Skin aging is characterized by wrinkle formation and increased frailty and laxity, leading to the risk of age-related skin diseases. Keratinocyte is an important component of the epidermis in skin structure, and keratinocyte senescence has been identified as a pivotal factor in skin aging development. Because epigenetic pathways play a vital role in the regulation of skin aging, we evaluated human skin samples for DNA hydroxymethylation (5-hydroxymethylcytosine; 5-hmC) and SIRT4 expressions. Results found that both 5-hmC and SIRT4 showed a significant decrease in aged human skin samples. To test the results in vitro, human keratinocytes were cultured in H2O2, which modulates skin aging in vivo. However, H2O2-induced keratinocytes showed senescence-associated protein expression and significant downregulation of 5-hmC and SIRT4 expressions. Moreover, 5-hmC-converting enzymes ten eleven translocation 2 (TET2) showed a decrease and enhanced TET2 acetylation level in H2O2-induced keratinocytes. However, the overexpression of SIRT4 in keratinocytes alleviates the senescence phenotype, such as senescence-associated protein expression, decreases the TET2 acetylation, but increases TET2 and 5-hmC expressions. Our results provide a novel relevant mechanism whereby the epigenetic regulation of keratinocytes in skin aging may be correlated with SIRT4 expression and TET2 acetylation in 5-hmC alteration. Our study may provide a potential strategy for antiskin aging, which targets the SIRT4/TET2 axis involving epigenetic modification in keratinocyte senescence.


Asunto(s)
5-Metilcitosina/análogos & derivados , Dioxigenasas , Sirtuinas , Humanos , Anciano , Epigénesis Genética , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Queratinocitos/metabolismo , Metilación de ADN , Proteínas Mitocondriales/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Dioxigenasas/metabolismo
4.
Bioorg Chem ; 144: 107140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38245950

RESUMEN

Two new compounds namely [Zn(L1)phen]31 and Ni(L1)phen(MeOH) 2 (L1 = 3, 5-dichlorosalicylaldehyde thiosemicarbazone) were synthesized by the slow evaporation method at room temperature. The structure of ligand L1 was determined using 1H NMR and 13C NMR spectra. X-ray single crystal diffraction analysis revealed that compounds 1-2 can form 3D supramolecular network structures through π···π stacking and hydrogen bonding interactions. The DFT calculation shows that the coordination of ligand and metal is in good agreement with the experimental results. Hirshfeld surface analysis revealed that H…H and Cl…H interactions were the predominant interactions in compounds 1-2. Energy framework analysis indicated that dispersion energy played a dominant role in the energy composition of compounds 1-2. The inhibitory effects of compounds 1-2 against Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA) were tested using the paper disk diffusion method (1: E. coli: 18 mm, MRSA: 17 mm, 2: E. coli: 15 mm, MRSA: 16 mm). Ion releasing experiments were conducted to assess the ion release capacity of compounds 1-2 (Zn2+, 4 days, 38.33 µg/mL; Ni2+, 4 days, 29.12 µg/mL). Molecular docking demonstrated the interaction modes of compounds 1-2 with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and dihydrofolate reductase (DHFR) in bacteria, involving hydrophobic, stacking, hydrogen bonding and halogen bonding interactions. The generation of reactive oxygen species (ROS) in bacteria under the presence of compounds 1-2 were evaluated using a fluorescent dye known as dichlorodihydrofluorescein diacetate (DCFH-DA). Potential antibacterial mechanisms of compounds 1-2 were proposed.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Escherichia coli , Ligandos , Simulación del Acoplamiento Molecular , Zinc/farmacología , Zinc/química , Níquel/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología
5.
Angew Chem Int Ed Engl ; : e202416189, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325535

RESUMEN

Controlling multicolor persistent room-temperature phosphorescence (RTP) through photoirradiation holds fundamental significance but remains a significant challenge. In this study, we engineered a wavelength-selective photoresponsive system utilizing the Förster resonance energy transfer strategy. This system integrates a photoactivated long-lived luminescent material as the energy donor with a fluorescent photoswitch as the energy acceptor, facilitating programmable persistent luminescence switches. Distinct afterglow color states, such as initial nonemissive, green, yellow, and orange, were achieved through irradiation at 400 nm, 365 nm, and 254 nm, respectively. Based on this capability, we established an interacting network for multistate afterglow color switching among these four emissive states. In addition, we demonstrate the potential of this wavelength-selective photoresponsive system in the photo-controlled rewritable printing of multicolor afterglow images on a single thin film. This work represents a substantial step towards the fabrication of sophisticated wavelength-selective photoresponsive systems, potentially revolutionizing applications in optical data storage, security labeling, and smart displays by enabling precise control over photoresponsive behaviors under various photoirradiation wavelengths.

6.
Small ; 19(25): e2208101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932880

RESUMEN

Multifunctional applications including efficient microwave absorption and electromagnetic interference (EMI) shielding as well as excellent Li-ion storage are rarely achieved in a single material. Herein, a multifunctional nanocrystalline-assembled porous hierarchical NiO@NiFe2 O4 /reduced graphene oxide (rGO) heterostructure integrating microwave absorption, EMI shielding, and Li-ion storage functions is fabricated and tailored to develop high-performance energy conversion and storage devices. Owing to its structural and compositional advantages, the optimized NiO@NiFe2 O4 /15rGO achieves a minimum reflection loss of -55 dB with a matching thickness of 2.3 mm, and the effective absorption bandwidth is up to 6.4 GHz. The EMI shielding effectiveness reaches 8.69 dB. NiO@NiFe2 O4 /15rGO exhibits a high initial discharge specific capacity of 1813.92 mAh g-1 , which reaches 1218.6 mAh g-1 after 289 cycles and remains at 784.32 mAh g-1 after 500 cycles at 0.1 A g-1 . In addition, NiO@NiFe2 O4 /15rGO demonstrates a long cycling stability at high current densities. This study provides an insight into the design of advanced multifunctional materials and devices and provides an innovative method of solving current environmental and energy problems.

7.
J Neuroinflammation ; 19(1): 156, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715859

RESUMEN

The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.


Asunto(s)
Plexo Coroideo , Hidrocefalia , Plexo Coroideo/metabolismo , Cilios , Epitelio , Humanos , Hidrocefalia/metabolismo , Ventrículos Laterales
8.
Crit Care Med ; 48(6): 815-821, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304414

RESUMEN

OBJECTIVES: Septic shock is a subset of sepsis related to acute circulatory failure characterized by severe immunosuppression and high mortality. Current knowledge about B-cell status in the immunosuppressive phase of septic shock is sparse. The aim of this study was to investigate the alterations of B Cells in the immunosuppressive phase of septic shock. DESIGN: Prospective cohort study. SETTING: Adult ICUs at a university hospital. PATIENTS: Adult septic shock patients without any documented immune comorbidity. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The absolute counts of lymphocytes and B cells of 81 patients and 13 healthy controls, and serum immunoglobulin levels of 64 patients and 10 healthy controls were determined by clinical laboratory. The percentages and counts of B-cell subsets of 33 patients and 10 healthy controls and the immunoglobulin M expression on B-cell subsets of 20 patients and five healthy controls were quantified by flow cytometry. Immunoglobulin levels produced by B cells after stimulation in vitro of 20 patients and five healthy controls were tested by enzyme-linked immunosorbent assay. Redistribution and selective depletion of B-cell subsets in septic shock patients were discovered, and a decrease in immunoglobulin M levels was associated with a reduction in resting memory B-cell counts. These alterations were more pronounced in nonsurvivors compared with survivors. Additionally, receiver operating characteristic curve analysis showed that the data of B-cell subsets had the best predictive value for mortality risk. CONCLUSIONS: Severe B-cell abnormalities are present in the immunosuppressive phase of septic shock and are associated with prognosis.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Inmunoglobulina M/metabolismo , Choque Séptico/fisiopatología , Adolescente , Adulto , Anciano , Linfocitos B/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Hospitales Universitarios , Humanos , Inmunoglobulinas/metabolismo , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Adulto Joven
9.
Soft Matter ; 16(31): 7332-7341, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32685953

RESUMEN

We present a method for actuating LCE materials by microwave radiation. The microwave actuation performance of a polysiloxane-based nematic liquid crystalline elastomer (LCE) was investigated. The microwave-material interaction caused a dipolar loss, which created a heating effect to trigger the nematic-isotropic transition of the LCE matrix, thus leading to the deformation actuation of the LCE material. This energy conversion from radiant energy to thermal energy provided a contactless pathway to actuate the LCE material without the aid of other components acting as energy converters. The LCE demonstrated rapid maximum contraction upon microwave irradiation, and this microwave-stimulated response was fully reversible when the microwave irradiation was switched off. More importantly, the microwave actuation exhibited superiority relative to photo-actuation, which is the usual method of contactless actuation. The microwaves can penetrate the opaque thick barriers to effectively actuate the LCE due to their strong penetrability; they can also penetrate multiple LCE samples and actuate them almost simultaneously. By taking advantage of the salient features of microwave actuation, a microwave detector system, implementing the LCE as an actuator material, was fabricated. This demonstrated the performance of monitoring microwave irradiation intensities with good sensitivity and convenient manipulation.

10.
Brain Behav Immun ; 80: 859-870, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145977

RESUMEN

Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1ß, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Piroptosis/efectos de los fármacos , Encefalopatía Asociada a la Sepsis/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Dipéptidos/farmacología , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/fisiopatología , Encefalopatía Asociada a la Sepsis/fisiopatología , Sinapsis/metabolismo , para-Aminobenzoatos/farmacología
11.
Soft Matter ; 15(30): 6116-6126, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31286128

RESUMEN

In this work, according to the characteristic of surface plasmon resonance (SPR) of metallic nanoparticles, we investigated the photo actuation performance of a liquid crystalline elastomer (LCE) nanocomposite with incorporated gold nanoparticles (nano-gold/LCE nanocomposite). The nano-gold/LCE nanocomposites were fabricated by incorporating gold nanoparticles into a polysiloxane-based LCE matrix via a novel experimental protocol, and characterized by a well-developed SPR absorption band in the visible spectrum range. The nano-gold/LCE nanocomposites demonstrated strong actuation upon irradiation with a quasi-daylight source; the reason lay in that the SPR response of gold nanoparticles performed efficient energy conversion from light energy to thermal energy, and thus offered an activation pathway for the nematic-isotropic transition of the LCE matrix. The nano-gold/LCE nanocomposites underwent rapid maximum axial contraction up to about one third of the original length under light irradiation, and this photo-stimulated muscle-like actuation was fully reversible via the on-off switching of the light source. The photo actuation properties of nano-gold/LCE nanocomposites with varying irradiation intensities and gold nanoparticle content were also investigated. In addition, the nano-gold/LCE nanocomposites demonstrated superior optical nonlinear properties, and revealed potential for the application area of mode-locking for laser technology.

12.
Tumour Biol ; 35(9): 8765-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24874051

RESUMEN

MicroRNAs (miRNAs) are small, non-coding RNAs which act as oncogenes or tumor suppressors in multiple human cancers. Accumulating evidence reveals that aberrant expression of miRNAs contributes to the development and progression of non-small cell lung cancer (NSCLC). Here, we identified miR-195 as a tumor suppressor in NSCLC cells, whose expression level was dramatically decreased in both NSCLC tissues and cell lines. Ectopic expression of miR-195 suppressed NSCLC cell proliferation and metastasis-related traits in vitro. Insulin-like growth factor 1 receptor (IGF1R) was identified as a direct target of miR-195 in NSCLC cells. Furthermore, restoration of IGF1R remarkably attenuated the tumor suppressive effects of miR-195 on NSCLC cells. Our data suggest that miR-195 may be involved in the carcinogenesis of NSCLC partially by targeting IGF1R.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular , Neoplasias Pulmonares/genética , MicroARNs/genética , Receptor IGF Tipo 1/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mutación , Metástasis de la Neoplasia , Receptor IGF Tipo 1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
13.
Plants (Basel) ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337972

RESUMEN

Lycium chinense, a type of medicinal and edible plant, is rich in bioactive compounds beneficial to human health. In order to meet the market requirements for the yield and quality of L. chinense, polyploid induction is usually an effective way to increase plant biomass and improve the content of bioactive components. This study established the most effective tetraploid induction protocol by assessing various preculture durations, colchicine concentrations, and exposure times. The peak tetraploid induction efficacy, 18.2%, was achieved with a 12-day preculture and 24-h exposure to 50 mg L-1 colchicine. Compared to diploids, tetraploids exhibited potentially advantageous characteristics such as larger leaves, more robust stems, and faster growth rates. Physiologically, tetraploids demonstrated increased stomatal size and chloroplast count in stomata but reduced stomatal density. Nutrient analysis revealed a substantial increase in polysaccharides, calcium, iron, and zinc in tetraploid leaves. In addition, seventeen carotenoids were identified in the leaves of L. chinense. Compared to the diploid, lutein, ß-carotene, neoxanthin, violaxanthin, and (E/Z)-phytoene exhibited higher levels in tetraploid strains T39 and T1, with T39 demonstrating a greater accumulation than T1. The findings suggest that the generated tetraploids harbor potential for further exploitation and lay the foundation for the selection and breeding of novel genetic resources of Lycium.

14.
Chem Sci ; 15(13): 4881-4889, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550680

RESUMEN

Simultaneously enhancing the quantum yields and luminescence lifetimes of organic persistent room temperature phosphorescence (RTP) molecules is a priority in the organic photonic area, but it remains a formidable challenge. Here, an effective strategy was proposed to improve both quantum efficiencies and emission decay times for phosphorescent triphenylphosphine salts. This approach involves integrating an electron donor unit into a triphenylphosphine salt via an alkyl chain. This structure facilitates an intermediate through-space charge transfer excited state, which enhances the intersystem crossing process to boost RTP performance. Moreover, the electron donor moiety contributes additional triplet excitons to the triphenylphosphine salts through triplet-to-triplet energy transfer, substantially increasing the population of triplet excitons. Specifically, compared to butyl(naphthalen-1-yl) diphenylphosphonium bromide (Φphos. = 4.9% and τ = 255.79 ms), (2-(9H-carbazol-9-yl)ethyl)(naphthalen-1-yl)diphenylphosphonium bromide demonstrates a higher phosphorescence quantum yield of 19.6% and an extended emission lifetime of 800.59 ms. This advancement lays the groundwork for developing high-performance organic RTP materials, unlocking new possibilities for advanced photonic applications.

15.
Int J Mol Med ; 54(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39219272

RESUMEN

Sepsis­induced myopathy (SIM) is one of the leading causes of death in critically ill patients. SIM mainly involves the respiratory and skeletal muscles of patients, resulting in an increased risk of lung infection, aggravated respiratory failure, and prolonged mechanical ventilation and hospital stay. SIM is also an independent risk factor associated with increased mortality in critically ill patients. At present, no effective treatment for SIM has yet been established. However, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach and have been utilized in the treatment of various clinical conditions. A significant body of basic and clinical research supports the efficacy of MSCs in managing sepsis and muscle­related diseases. This literature review aims to explore the relationship between MSCs and sepsis, as well as their impact on skeletal muscle­associated diseases. Additionally, the present review discusses the potential mechanisms and therapeutic benefits of MSCs in the context of SIM.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Musculares , Sepsis , Humanos , Sepsis/terapia , Sepsis/complicaciones , Células Madre Mesenquimatosas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedades Musculares/terapia , Enfermedades Musculares/etiología , Animales
16.
Brain Commun ; 6(5): fcae236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229491

RESUMEN

The COVID-19 pandemic has underscored the critical interplay between systemic infections and neurological complications, notably cerebral microbleeds. This comprehensive review meticulously aggregates and analyses current evidence on cerebral microbleeds' prevalence, pathophysiological underpinnings and clinical implications within COVID-19 cohorts. Our findings reveal a pronounced correlation between cerebral microbleeds and increased severity of COVID-19, emphasizing the role of direct viral effects, inflammatory responses and coagulation disturbances. The documented association between cerebral microbleeds and elevated risks of morbidity and mortality necessitates enhanced neurological surveillance in managing COVID-19 patients. Although variability in study methodologies presents challenges, the cumulative evidence substantiates cerebral microbleeds as a critical illness manifestation rather than mere coincidence. This review calls for harmonization in research methodologies to refine our understanding and guide targeted interventions. Prioritizing the detection and study of neurological outcomes, such as cerebral microbleeds, is imperative for bolstering pandemic response strategies and mitigating the long-term neurological impact on survivors.

17.
Shock ; 62(4): 565-573, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227368

RESUMEN

ABSTRACT: Background: Sepsis commonly leads to skeletal muscle atrophy, characterized by substantial muscle weakness and degeneration, ultimately contributing to an adverse prognosis. Studies have shown that programmed cell death is an important factor in the progression of muscle loss in sepsis. However, the precise role and mechanism of pyroptosis in skeletal muscle atrophy are not yet fully comprehended. Therefore, we aimed to examine the role and mechanism of action of the pyroptosis effector protein GSDMD in recognized cellular and mouse models of sepsis. Methods: The levels of GSDMD and N-GSDMD in skeletal muscle were evaluated 2, 4, and 8 days after cecal ligation and puncture. Sepsis was produced in mice that lacked the Gsdmd gene (Gsdmd knockout) and in mice with the normal Gsdmd gene (wild-type) using a procedure called cecal ligation and puncture. The degree of muscular atrophy in the gastrocnemius and tibialis anterior muscles was assessed 72 h after surgery in the septic mouse model. In addition, the architecture of skeletal muscles, protein expression, and markers associated with pathways leading to muscle atrophy were examined in mice from various groups 72 h after surgery. The in vitro investigations entailed the use of siRNA to suppress Gsdmd expression in C2C12 cells, followed by stimulation of these cells with lipopolysaccharide to evaluate the impact of Gsdmd downregulation on muscle atrophy and the related signaling cascades. Results: This study has demonstrated that the GSDMD protein, known as the "executive" protein of pyroptosis, plays a crucial role in the advancement of skeletal muscle atrophy in septic mice. The expression of N-GSDMD in the skeletal muscle of septic mice was markedly higher compared with the control group. The Gsdmd knockout mice exhibited notable enhancements in survival, muscle strength, and body weight compared with the septic mice. Deletion of the Gsdmd gene reduced muscular wasting in the gastrocnemius and tibialis anterior muscles caused by sepsis. Studies conducted in living organisms ( in vivo ) and in laboratory conditions ( in vitro ) have shown that the absence of the Gsdmd gene decreases indicators of muscle loss associated with sepsis by blocking the IL18/AMPK signaling pathway. Conclusion: The results of this study demonstrate that the lack of Gsdmd has a beneficial effect on septic skeletal muscle atrophy by reducing the activation of IL18/AMPK and inhibiting the ubiquitin-proteasome system and autophagy pathways. Therefore, our research provides vital insights into the role of pyroptosis in sepsis-related skeletal muscle wasting, which could potentially lead to the development of therapeutic and interventional approaches for preventing septic skeletal muscle atrophy.


Asunto(s)
Ratones Noqueados , Músculo Esquelético , Atrofia Muscular , Proteínas de Unión a Fosfato , Sepsis , Transducción de Señal , Animales , Sepsis/metabolismo , Ratones , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteínas de Unión a Fosfato/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Animales de Enfermedad , Piroptosis , Ratones Endogámicos C57BL , Gasderminas
18.
Heliyon ; 10(7): e29062, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601693

RESUMEN

Background: The role of Ferroptosis in the course of sepsis-induced myopathy is yet unclear. The objective of our work is to identify key genes connected with Ferroptosis in sepsis-induced myopathy and investigate possible pharmaceutical targets related to this process. This research aims to provide new insights into the management of sepsis-induced myopathy. Methods: We got the GSE13205 dataset from the Gene Expression Omnibus (GEO) and extracted Ferroptosis-associated genes from the FerrDb database. After conducting a functional annotation analysis of these genes, we created a protein-protein interaction network using Cytoscape software to identify important genes. Subsequently, we employed CMap to investigate prospective pharmaceuticals that could target these crucial genes. Results: A total of 61 genes that are expressed differently (DEGs) have been found concerning Ferroptosis. These genes are involved in a wide range of biological functions, including reacting to signals from outside the cell and the availability of nutrients, programmed cell death, controlling apoptosis, and responding to peptides, chemical stressors, and hormones. The KEGG pathway study revealed that these pathways are involved in Ferroptosis, autophagy, P53 signaling, PI3K-Akt signaling, mTOR signaling, HIF-1 signaling, endocrine resistance, and different tumorigenic processes. In addition, we created a network that shows the simultaneous expression of important genes and determined the top 10 medications that have the potential to treat sepsis-induced myopathy. Conclusion: The bioinformatics research undertaken sheds insight into the probable role of Ferroptosis-associated genes in sepsis-induced myopathy. The identified critical genes show potential as therapeutic targets for treating sepsis-induced myopathy, offering opportunities for the development of tailored medicines.

19.
Poult Sci ; 102(4): 102502, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739801

RESUMEN

Mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), are common contaminants of moldy feeds. Mycotoxins can cause deleterious effects on the health of chickens and can be carried over in poultry food products. This study was conducted to investigate the effects of moldy corn (containing AFB1, ZEN, and DON) on the performance, health, and mycotoxin residues of laying hens. One hundred and eighty 400-day-old laying hens were divided into 4 treatments: basal diet (Control), basal diet containing 20% moldy corn (MC20), 40% moldy corn (MC40) and 60% moldy corn (MC60). At d 20, 40, and 60, the performance, oxidative stress, immune function, metabolism, and mycotoxin residues in eggs were determined. At d 60, mycotoxin residues in muscle and edible viscera were measured. Results showed the average daily feed intake (ADFI) and laying performance of laying hens were decreased with moldy corn treatments. All the moldy corn treatments also induced significant oxidative stress and immunosuppression, reflected by decreased antioxidase activities, contents of cytokines, immunoglobulins, and increased malonaldehyde level. Moreover, the activities of aspartate aminotransferase and alanine transaminase were increased by moldy corn treatments. The lipid metabolism was influenced in laying hens receiving moldy corn, reflected by lowered levels of total protein, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, and increased total triglyceride as well as uric acid. The above impairments were aggravated with the increase of mycotoxin levels. Furthermore, AFB1 and ZEN residues were found in eggs, muscle, and edible viscera with moldy corn treatments, but the residues were below the maximum residue limits. In conclusion, moldy corn impaired the performance, antioxidant capacity, immune function, liver function, and metabolism of laying hens at d 20, 40, and 60. Moldy corn also led to AFB1 residue in eggs at d 20, 40, and 60, and led to both AFB1 and ZEN residues in eggs at days 40 and 60, and in muscle and edible viscera at d 60. The toxic effects and mycotoxin residues were elevated with the increase of moldy corn levels in feed.


Asunto(s)
Micotoxinas , Tricotecenos , Zearalenona , Animales , Femenino , Micotoxinas/toxicidad , Micotoxinas/metabolismo , Antioxidantes/metabolismo , Tricotecenos/toxicidad , Zea mays/metabolismo , Pollos/fisiología , Vísceras/química , Vísceras/metabolismo , Zearalenona/toxicidad , Hongos/metabolismo , Dieta/veterinaria , Huevos/análisis , Alimentación Animal/análisis , Músculos/metabolismo , Inmunidad
20.
Front Med (Lausanne) ; 10: 1249724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692780

RESUMEN

Background: Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PIICS) is a significant contributor to adverse long-term outcomes in severe trauma patients. Objective: The objective of this study was to establish and validate a PIICS predictive model in severe trauma patients, providing a practical tool for early clinical prediction. Patients and methods: Adult severe trauma patients with an Injury Severity Score (ISS) of ≥16, admitted between October 2020 and December 2022, were randomly divided into a training set and a validation set in a 7:3 ratio. Patients were classified into PIICS and non-PIICS groups based on diagnostic criteria. LASSO regression was used to select appropriate variables for constructing the prognostic model. A logistic regression model was developed and presented in the form of a nomogram. The performance of the model was evaluated using calibration and ROC curves. Results: A total of 215 patients were included, consisting of 155 males (72.1%) and 60 females (27.9%), with a median age of 51 years (range: 38-59). NRS2002, ISS, APACHE II, and SOFA scores were selected using LASSO regression to construct the prognostic model. The AUC of the ROC analysis for the predictive model in the validation set was 0.84 (95% CI 0.72-0.95). The Hosmer-Lemeshow test in the validation set yielded a χ2 value of 14.74, with a value of p of 0.098. Conclusion: An accurate and easily implementable PIICS risk prediction model was established. It can enhance risk stratification during hospitalization for severe trauma patients, providing a novel approach for prognostic prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA