Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Model ; 29(4): 109, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964244

RESUMEN

OBJECTIVE: The COVID-19 epidemic is raging around the world, with the emergence of viral mutant strains such as Delta and Omicron, posing severe challenges to people's health and quality of life. A full understanding life cycle of the virus in host cells helps to reveal inactivation mechanism of antibody and provide inspiration for the development of a new-generation vaccines. METHODS: In this work, molecular recognitions and conformational changes of SARS-CoV-2 spike protein mutants (i.e., Delta, Mu, and Omicron) and three essential partners (i.e., membrane receptor hACE2, protease TMPRSS2, and antibody C121) both were compared and analyzed using molecular simulations. RESULTS: Water basin and binding free energy calculations both show that the three mutants possess higher affinity for hACE2 than WT, exhibiting stronger virus transmission. The descending order of cleavage ability by TMPRSS2 is Mu, Delta, Omicron, and WT, which is related to the new S1/S2 cutting site induced by transposition effect. The inefficient utilization of TMPRSS2 by Omicron is consistent with its primary entry into cells via the endosomal pathway. In addition, RBD-directed antibody C121 showed obvious resistance to Omicron, which may have originated from high fluctuation of approaching angles, high flexibility of I472-F490 loop, and reduced binding ability. CONCLUSIONS: According to the overall characteristics of the three mutants, high infectivity, high immune escape, and low virulence may be the future evolutionary selection of SARS-CoV-2. In a word, this work not only proposes the possible resistance mechanism of SARS-CoV-2 mutants, but also provides theoretical guidance for the subsequent drug design against COVID-19 based on S protein structure.


Asunto(s)
COVID-19 , Humanos , Calidad de Vida , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
2.
J Mol Model ; 29(9): 286, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610510

RESUMEN

CONTEXT: Pectin methylesterase inhibitor (PMEI) can specifically bind and inhibit the activity of pectin methylesterase (PME), which has been widely used in fruit and vegetable juice processing. However, the limited three-dimensional structure, unclear action mechanism, low thermal stability and biological activity of PMEI severely limited its application. In this work, molecular recognition and conformational changes of PME and PMEI were analyzed by various molecular simulation methods. Then suggestions were proposed for improving thermal stability and affinity maturation of PMEI through semi-rational design. METHODS: Phylogenetic trees of PME and PMEI were established using the Maximum likelihood (ML) method. The results show that PME and PMEI have good sequence and structure conservation in various plants, and the simulated data can be widely adopted. In this work, MD simulations were performed using AMBER20 package and ff14SB force field. Protein interaction analysis indicates that H-bonds, van der Waals forces, and the salt bridge formed of K224 with ID116 are the main driving forces for mutual molecular recognition of PME and PMEI. According to the analyses of free energy landscape (FEL), conformational cluster, and motion, the association with PMEI greatly disrupts PME's dispersed functional motion mode and biological function. By monitoring the changes of residue contact number and binding free energy, IG35M/ IG35R: IT93F and IT113W/ IT113W: ID116W mutations contribute to thermal stability and affinity maturation of the PME-PMEI complex system, respectively. This work reveals the interaction between PME and PMEI at the gene and protein levels and provides options for modifying specific PMEI.


Asunto(s)
Hidrolasas de Éster Carboxílico , Filogenia , Hidrolasas de Éster Carboxílico/genética , Simulación por Computador , Mutación
3.
Mol Biomed ; 3(1): 12, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35461370

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading globally and continues to rage, posing a serious threat to human health and life quality. Antibody therapy and vaccines both have shown great efficacy in the prevention and treatment of COVID-19, whose development progress and adaptation range have attracted wide attention. However, with the emergence of variant strains of SARS-CoV-2, the neutralization activity of therapeutic or vaccine-induced antibodies may be reduced, requiring long-term virus monitoring and drug upgrade in response to its evolution. In this paper, conformational changes including continuous epitopes (CPs), discontinuous epitopes (DPs) and recognition interfaces of the three representative SARS-CoV-2 spike protein (SP) mutants (i.e., the Delta (B.1.617.2), Mu (B.1.621) and Omicron (B.1.1.529) strains), were analyzed to evaluate the effectiveness of current mainstream antibodies. The results showed that the conformation of SP wild type (WT) and mutants both remained stable, while the local antigenic epitopes underwent significant changes. Sufficient flexibility of SP CPs is critical for effective antibody recognition. The DPs of Delta, Mu and Omicron variants have showed stronger binding to human angiotensin converting enzyme-2 (hACE2) than WT; the possible drug resistance mechanisms of antibodies against three different epitopes (i.e., NTD_DP, RBD1_DP and RBD2_DP) were also proposed, respectively; the RBD2 of Delta, NTD of Mu, NTD and RBD2 of Omicron are deserve more attention in the subsequent design of next-generation vaccines. The simulation results not only revealed structural characteristics of SP antigenic epitopes, but also provided guidance for antibody modification, vaccine design and effectiveness evaluation.

4.
Food Sci Nutr ; 10(12): 4155-4167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514765

RESUMEN

As an extremely strong polycyclic aromatic hydrocarbon carcinogen, benzo[α]pyrene (BaP) is often produced during food processing at high temperatures. Recently, food safety, as well as toxicity mechanism and risk assessment of BaP, has received extensive attention. We first constructed the database of BaP pollution concentration in Chinese daily food with over 104 data items; collected dietary intake data using online survey; then assessed dietary exposure risk; and finally revealed the possible toxicity mechanism through four comparative molecular dynamics (MD) simulations. The statistical results showed that the concentration of BaP in olive oil was the highest, followed by that in fried meat products. The margins of exposure and incremental lifetime cancer risk both indicated that the dietary exposure to BaP of the participants was generally safe, but there were still some people with certain carcinogenic risks. Specifically, the health risk of the core district population was higher than that of the noncore district in Bashu area, and the female postgraduate group was higher than the male group with bachelor degree or below. From MD trajectories, BaP binding does not affect the global motion of individual nucleic acid sequences, but local weak noncovalent interactions changed greatly; it also weakens molecular interactions of nucleic acid with Bacillus stearothermophilus DNA polymerase I large fragment (BF), and significantly changes the cavity structure of recognition interface. This work not only reveals the possible toxicity mechanism of BaP, but also provides theoretical guidance for the subsequent optimization of food safety standards and reference of rational diet.

5.
Curr Protein Pept Sci ; 23(10): 684-696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36121086

RESUMEN

As an important pectin enzyme, pectin methylesterase (PME) can hydrolyze methyl esters, release methanol and reduce esterification. It is essential in regulating pollen tube development, root extension, and fruit ripening. Pectin methylesterase inhibitors (PMEI) can specifically bind PME and inhibit its activity, which jointly determines the esterification degree of pectin. PMEI has important application prospects in plant pest control, fruits and vegetable processing fields. In this paper, the gene families, crystal structures, molecular recognition, and applications in plants and industry are reviewed for the PME and PMEI systems. Finally, the semi-rational design of PMEI is discussed and discussed prospected.


Asunto(s)
Hidrolasas de Éster Carboxílico , Pectinas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pectinas/química , Pectinas/metabolismo , Plantas/metabolismo , Inhibidores Enzimáticos/química
6.
Int J Biol Macromol ; 223(Pt A): 1562-1577, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36402394

RESUMEN

As a vital target for the development of novel anti-cancer drugs, human concentrative nucleoside transporter 3 (hCNT3) has been widely concerned. Nevertheless, the lack of a comprehensive understanding of molecular interactions and motion mechanism has greatly hindered the development of novel inhibitors against hCNT3. In this paper, molecular recognition of hCNT3 with uridine was investigated with molecular docking, conventional molecular dynamics (CMD) simulations and adaptive steered molecular dynamics (ASMD) simulations; and then, the uridine derivatives with possibly highly inhibitory activity were designed. The result of CMD showed that more water-mediated H-bonds and lower binding free energy both explained higher recognition ability and transported efficiency of hCNT3. While during the ASMD simulation, nucleoside transport process involved the significant side-chain flip of residues F321 and Q142, a typical substrate-induced conformational change. By considering electronegativity, atomic radius, functional group and key H-bonds factors, 25 novel uridine derivatives were constructed. Subsequently, the receptor-ligand binding free energy was predicted by solvated interaction energy (SIE) method to determine the inhibitor c8 with the best potential performance. This work not only revealed molecular recognition and release mechanism of uridine with hCNT3, but also designed a series of uridine derivatives to obtain lead compounds with potential high activity.


Asunto(s)
Nucleósidos , Humanos , Uridina/metabolismo , Uridina/farmacología , Simulación del Acoplamiento Molecular , Transporte Biológico , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA