Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968109

RESUMEN

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Trofoblastos , Trofoblastos/metabolismo , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Femenino , Embarazo , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Placenta/metabolismo , Transducción de Señal , Autofagia/fisiología
2.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838802

RESUMEN

Lipid-related cancers cause a large number of deaths worldwide. Therefore, development of highly efficient Lipid droplets (LDs) fluorescent imaging probes will be beneficial to our understanding of lipid-related cancers by allowing us to track the metabolic process of LDs. In this work, a LDs-specific NIR (λmax = 698 nm) probe, namely BY1, was rationally designed and synthesized via a one-step reaction by integrating triphenylamine (electron-donor group) unit into the structure of rofecoxib. This integration strategy enabled the target BY1 to form a strong Donor-Acceptor (D-A) system and endowed BY1 with obvious aggregation-induced emission (AIE) effect. Meanwhile, BY1 also showed observable solvent effect and reversible mechanochromatic luminescent property, which could be interpreted clearly via density functional theory (DFT) calculations, differential scanning calorimetry (DSC), powder X-ray diffraction (XPRD), and single crystal X-ray data analysis. More importantly, BY1 exhibited highly specific fluorescent imaging ability (Pearson's correlation = 0.97) towards lipid droplets in living HeLa cells with low cytotoxicity. These results demonstrated that BY1 is a new promising fluorescent probe for lipid droplets imaging, and it might be beneficial to facilitate biological research of lipid-related cancers.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Colorantes Fluorescentes/química , Células HeLa , Lípidos
3.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214458

RESUMEN

This paper proposes a unified attitude controller based on the modified linear active disturbance rejection control (LADRC) for a dual-tiltrotor unmanned aerial vehicle (UAV) with cyclic pitch to achieve accurate attitude control despite its nonlinear and time-varying characteristics during flight mode transitions. The proposed control algorithm has higher robustness against model mismatch compared with the model-based control algorithms. The modified LADRC utilizes the state feedbacks from the onboard sensors like IMU and Pitot tube instead of the mathematical model of the plane. It has less dependency on the accurate dynamics model of the dual-tiltrotor UAV, which can hardly be built. In contrast to the original LADRC, an actuator model is integrated into the modified LADRC to compensate for the non-negligible slow rotor flapping dynamics and servo dynamics. This modification eliminates the oscillation of the original LADRC when applied on the plant with slow-response actuators, such as propeller and rotors of the helicopter. In this way, the stability and performance of the controller are improved. The controller replaces the gain-scheduling or the control logic switching by a unified controller structure, which simplifies the design approach of the controller for different flight modes. The effectiveness of the modified LADRC and the performance of the unified attitude controller are demonstrated in both simulation and flight tests using a dual-tiltrotor UAV. The attitude control error is less than ±4° during the conversion flight. The control rising time in different flight modes is all about 0.5 s, despite the variations in the airspeed and tilt angle. The flight results show that the controller guarantees high control accuracy and uniform control quality in different flight modes.

4.
Molecules ; 27(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011426

RESUMEN

In this work, we synthesized a pair of positional isomers by attaching a small electron-donating pyrrolidinyl group at ortho- and para-positions of a conjugated core. These isomers exhibited totally different fluorescent properties. PDB2 exhibited obvious aggregation-induced emission properties. In contrast, PDB4 showed the traditional aggregation-caused quenching effect. Their different fluorescent properties were investigated by absorption spectroscopy, fluorescence spectroscopy, density functional theory calculations and single-crystal structural analysis. These results indicated that the substituent position of the pyrrolidinyl groups affects the twisted degree of the isomers, which further induces different molecular packing modes, thus resulting in different fluorescent properties of these two isomers. This molecular design concept provided a new accurate strategy for designing new aggregation-induced emission luminogens.

5.
Mol Cell Probes ; 49: 101480, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31711827

RESUMEN

Circulating tumor DNA (ctDNA) is tumor-derived, fragmented DNA that circulates freely in body fluids, predominantly in the peripheral blood. Recently, ctDNA analysis has been suggested as a complement to tissue biopsy in the detection and treatment of cancer. Genetic and epigenetic information specific to tumor cells, including single nucleotide variations, copy number variations, and modified methylation patterns, can be detected in ctDNA. Importantly, mutations in heterogenous tumors that could impart therapeutic resistance could be identified in ctDNA, which would aid in cancer diagnosis, prognosis, and real-time monitoring, and inform treatment with targeted therapies. However, ctDNA is still not a routinely used method for this purpose, because its detection techniques lack adequate sensitivity for reliable use in scientific studies and clinical trials. This review provides an up-to-date summary of ctDNA mutation detection methods based on next generation sequencing, highlighting their advantages and limitations, and focusing in particular on several optimized library preparation methods for improved sensitivity and specificity of ctDNA detection.


Asunto(s)
ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional , Análisis Mutacional de ADN , Biblioteca de Genes , Humanos
6.
Analyst ; 144(20): 5912-5922, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31436778

RESUMEN

DNA methylation is an important epigenetic marker that affects gene expression. Cell-free DNA methylation detection is a promising approach as abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. This review summarizes the existing literature and reviews on the detection methods based on next generation sequencing for DNA methylation. The review also discusses the feasibility of detecting cfDNA methylation and the latest progress.


Asunto(s)
Biomarcadores de Tumor/análisis , Ácidos Nucleicos Libres de Células/análisis , Metilación de ADN , ADN de Neoplasias/análisis , Neoplasias/diagnóstico , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , ADN de Neoplasias/genética , Detección Precoz del Cáncer , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética
7.
Opt Express ; 26(18): 22750-22760, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184930

RESUMEN

Few-layer bismuthene is an emerging two-dimensional material in the fields of physics, chemistry, and material science. However, its nonlinear optical property and the related photonics device have been seldom studied so far. Here, we demonstrate a sub-200 fs soliton mode-locked erbium-doped fiber laser (EDFL) using a microfiber-based bismuthene saturable absorber for the first time, to the best of our knowledge. The bismuthene nanosheets are synthesized by the sonochemical exfoliation method and transferred onto the taper region of a microfiber by the optical deposition method. Stable soliton pulses centered at 1561 nm with the shortest pulse duration of about 193 fs were obtained. Our findings unambiguously imply that apart from its fantastic electric and thermal properties, few-layer bismuthene may also possess attractive optoelectronic properties for nonlinear photonics, such as mode-lockers, Q-switchers, optical modulators and so on.

8.
Discov Oncol ; 15(1): 391, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215845

RESUMEN

Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.

9.
PLoS One ; 19(3): e0299435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498583

RESUMEN

The detection of water quality indicators such as Temperature, pH, Turbidity, Conductivity, and TDS involves five national standard methods. Chemically based measurement techniques may generate liquid residue, causing secondary pollution. The water quality monitoring and data analysis system can effectively address the issues that conventional methods require multiple pieces of equipment and repeated measurements. This paper analyzes the distribution characteristics of the historical data from five sensors at a specific time, displays them graphically in real time, and provides an early warning of exceeding the standard; It selects four water samples from different sections of the Li River, based on the national standard method, the average measurement errors of Temperature, PH, TDS, Conductivity and Turbidity are 0.98%, 2.23%, 2.92%, 3.05% and 3.98%.;It further uses the quartile method to analyze the outlier data over 100,000 records and five historical periods are selected. Experiment results show the system is relatively stable in measuring Temperature, PH and TDS, and the proportion of outlier is 0.42%, 0.84% and 1.24%. When Turbidity and Conductivity are measured, the proportion is 3.11% and 2.92%. In the experiment of using 7 methods to fill outlier, K nearest neighbor algorithm is better than others. The analysis of data trends, outliers, means, and extreme values assists in making decisions, such as updating and maintaining equipment, addressing extreme water quality situations, and enhancing regional water quality oversight.


Asunto(s)
Ríos , Calidad del Agua , Ríos/química , Monitoreo del Ambiente/métodos , Agua Dulce , Análisis por Conglomerados
10.
Oncol Ther ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217582

RESUMEN

The gut microbiota plays a crucial role in maintaining homeostasis in the human gastrointestinal tract. Numerous studies have shown a strong association between the gut microbiota and the emergence and progression of various diseases. Leukemia is one of the most common hematologic malignancies. Although standardized protocols and expert consensus have been developed for routine diagnosis and treatment, limitations remain due to individual differences. Nevertheless, a large number of studies have established a link between the gut microbiota and leukemia, with disturbances in the gut microbiota directly or indirectly affecting the development of leukemia. However, the causal relationship between the two remains unclear, and studying and exploring the causal relationship may open up entirely new avenues and protocols for use in the prevention and/or treatment of leukemia, offering new insights into diagnosis and treatment. In this review, the intricate relationship between the gut microbiota and leukemia is explored in depth, including causal associations, metabolite effects, therapeutic applications, and complications. Based on the characteristics of the gut microbiota, the future applications and prospects of gut microbiota are discussed to provide useful information for clinical treatment of leukemia.

11.
PLoS One ; 19(4): e0301902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603697

RESUMEN

Spectral collinearity and limited spectral datasets are the problems influencing Chemical Oxygen Demand (COD) modeling. To address the first problem and obtain optimal modeling range, the spectra are preprocessed using six methods including Standard Normal Variate, Savitzky-Golay Smoothing Filtering (SG) etc. Subsequently, the 190-350 nm spectral range is divided into 10 subintervals, and Interval Partial Least Squares (IPLS) is used to perform PLS modeling on each interval. The results indicate that it is best modeled in the 7th range (238~253 nm). The values of Mean Square Error (MSE), Mean Absolute Error (MAE) and R2score of the model without pretreatment are 1.6489, 1.0661, and 0.9942. After pretreatment, the SG is better than others, with MSE and MAE decreasing to 1.4727, 1.0318 and R2score improving to 0.9944. Using the optimal model, the predicted COD for three samples are 10.87 mg/L, 14.88 mg/L, and 19.29 mg/L. To address the problem of the small dataset, using Generative Adversarial Networks for data augmentation, three datasets are obtained for Support Vector Machine (SVM) modeling. The results indicate that, compared to the original dataset, the SVM's MSE and MAE have decreased, while its accuracy has improved by 2.88%, 11.53%, and 11.53%, and the R2score has improved by 18.07%, 17.40%, and 18.74%.


Asunto(s)
Espectroscopía Infrarroja Corta , Máquina de Vectores de Soporte , Espectroscopía Infrarroja Corta/métodos , Análisis de la Demanda Biológica de Oxígeno , Análisis de los Mínimos Cuadrados , Agua , Algoritmos
12.
Sci Rep ; 14(1): 21426, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271708

RESUMEN

Referring to the intestinal ischemic injury caused by sudden interruption of the blood supply, acute mesenteric ischemia (AMI) is a highly fatal emergency with mortality rates varying from 58 to 80%. The aim of this study was to explore the effect of temperature on AMI admission. This was a retrospective, multicentric study. The medical records of 1477 patients with verified AMI who were consecutively admitted to 3 hospitals anytime between January 2010 and December 2020 were included in the study. Distributed lag non-linear model was applied, the model was adjusted for temperature, atmospheric pressure, relative humidity, year, holiday, day of the week, time and seasonality. AMI exhibited obvious sex preference, AMI patients tended to be male (M/F ratio = 2.3:1) and in their late 50 s. Hospital admissions of acute mesenteric arterial thromboembolism (AMAT) increased significantly with high temperatures on day of exposure and lag 0-14 day. The effect curve of daily average temperature on acute mesenteric venous thromboembolism (AMVT) admission was J-shaped, and the duration of cold effect was longer, while the duration of heat effect was shorter. An increase in hospital admissions of AMVT was found above 20 °C at lag 0-30. For the first time, our study indicated that temperature is significantly associated with the risk of AMI. Although it is not possible to always avoid exposure to extreme temperatures, one should be aware of dramatic temperature fluctuations and take appropriate precautions.


Asunto(s)
Presión Atmosférica , Humedad , Isquemia Mesentérica , Temperatura , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Hospitalización , Enfermedad Aguda , Admisión del Paciente , Estaciones del Año , Anciano de 80 o más Años
13.
J Cancer ; 15(7): 1954-1965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434966

RESUMEN

Background: Our main objective is to apply bioinformatics in predicting the efficacy of digestive tumour immunotherapy target TIM-3 and its inhibitors. Methods: Our study used the gene expression omnibus (GEO) database to identify datasets associated with digestive tumours and the action of TIM-3. The GSE427729 dataset based on the GPL10192 platform. The dataset consisted of six samples of total RNA derived from TIM-3 control and knockdown RAW 264.7 cells. We used GEO2R tool to identify DEGs before performing Gene Ontology and identifying the kyoto encyclopedia of genes and genomes (KEGG) pathways. Lastly, we determined the PPI networks to identify hub genes. Results: Our study identified 57 differentially expressed genes based on an adjusted p-value of less than 0.05 and a log2 fold change of 2.0. There were 26 down-regulated genes with 31 up-regulated genes while 22, 404 genes were non-significant. The DEGs were enriched in biological pathways such as activating leukocytes, cells, and development of the immune system. Additionally, we identified four significant KEGG pathways that were implicated in digestive tumour immunotherapy and TIM-3; pathways of pancreatic cancer, NF-Kappa B signalling pathway, Toll-like receptor signalling pathway and C-type lectin receptor signalling pathway. The PPI networks identified 10 hub genes that were implicated in digestive tumour immunotherapy target TIM-3 (Myd88, Traf6, Irf7, Cdk4, Ccnd2, Mapkap1, Prr5, Mpp3, Serpinb6b and Pvrl3). Conclusion: Targeting these biological pathways, KEGG pathways, molecular functions and cellular processes can lead to novel therapeutic treatment and management in digestive tumours based on TIM-3 immunotherapy.

14.
IEEE Trans Biomed Eng ; 71(4): 1161-1169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37922169

RESUMEN

Surface electromyography (sEMG) is currently the primary method for user control of prosthetic manipulation. Its inherent limitations of low signal-to-noise ratio, limited specificity and susceptibility to noise, however, hinder successful implementation. Ultrasound provides a possible alternative, but current systems with medical probes are expense, bulky and non-wearable. This work proposes an innovative prosthetic control strategy based on a piezoelectric micromachined ultrasound transducer (PMUT) hardware system. Two PMUT-based probes were developed, comprising a 23×26 PMUT array and encapsulated in Ecoflex material. These compact and wearable probes represent a significant improvement over traditional ultrasound probes as they weigh only 1.8 grams and eliminate the need for ultrasound gel. A preliminary test of the probes was performed in non-disabled subjects performing 12 different hand gestures. The two probes were placed perpendicular to the flexor digitorum superficialis and brachioradialis muscles, respectively, to transmit/receive pulse-echo signals reflecting muscle activities. Hand gesture was correctly predicted 96% of the time with only these two probes. The adoption of the PMUT-based strategy greatly reduced the required number of channels, amount of processing circuit and subsequent analysis. The probes show promise for making prosthesis control more practical and economical.


Asunto(s)
Miembros Artificiales , Humanos , Ultrasonografía , Relación Señal-Ruido , Transductores , Extremidad Superior/diagnóstico por imagen
15.
Phytomedicine ; 134: 156021, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39255724

RESUMEN

BACKGROUND: Cholestasis (CT) is a group of disorders caused by impaired production, secretion or excretion of bile. This may result in the deposition of bile components in the blood and liver, which in turn causes damage to liver cells and other tissues. If untreated, CT can progress to severe complications, including cirrhosis, liver failure, and potentially life-threatening conditions. OBJECTIVE: This research was intended to elucidate the function and mechanism of Paeoniflorin (PF) in ameliorating ANIT-induced pyroptosis in CT. METHODS: CT models were established in SD rats and HepG2 cells through ANIT treatment. Histological examination was conducted using haematoxylin and eosin (HE) staining to assess the histopathological alterations in the liver. Network pharmacology was employed to identify potential PF targets in CT treatment. To evaluate pyroptosis levels, various methods were used, including serum biochemical analysis, Enzyme-Linked Immunosorbent Assay (ELISA), immunofluorescence (IF), immunohistochemistry (IHC), Western blotting, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The HuProt™ 20K Chip was utilized to pinpoint potential PF-binding targets. PF's direct mechanisms in CT treatment were explored using molecular docking (MD), molecular dynamics simulations (MDS), Cellular Thermal Shift Assay (CETSA), and Surface Plasmon Resonance (SPR). RESULTS: PF administration was found to alleviate ANIT-induced liver pathology, enhance liver function markers, and improve cell viability. Network pharmacology and pyroptosis inhibitor studies suggested that PF might mitigate CT via the NLRP3-dependent pyroptosis pathway. This hypothesis was further supported by Western blotting, IF, and IHC analyses, which indicated PF's potential to inhibit NLRP3-dependent pyroptosis in CT. GSDMD was identified as a target through HuProt™ 20K Chip screening. The binding affinity of PF to GSDMD was validated through MD, MDS, CETSA, and SPR techniques. Additionally, the regulatory impact of GSDMD on downstream inflammatory pathways was confirmed by ELISA and IHC. CONCLUSION: PF exhibited a hepatoprotective effect in ANIT-induced CT, primarily by targeting GSDMD, thereby suppressing ANIT-induced pyroptosis and the subsequent release of inflammatory mediators.

16.
Adv Sci (Weinh) ; 11(3): e2305430, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018350

RESUMEN

The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3  S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.

17.
Sci Rep ; 14(1): 6209, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485967

RESUMEN

Efficient and rapid auxiliary diagnosis of different grades of lung adenocarcinoma is conducive to helping doctors accelerate individualized diagnosis and treatment processes, thus improving patient prognosis. Currently, there is often a problem of large intra-class differences and small inter-class differences between pathological images of lung adenocarcinoma tissues under different grades. If attention mechanisms such as Coordinate Attention (CA) are directly used for lung adenocarcinoma grading tasks, it is prone to excessive compression of feature information and overlooking the issue of information dependency within the same dimension. Therefore, we propose a Dimension Information Embedding Attention Network (DIEANet) for the task of lung adenocarcinoma grading. Specifically, we combine different pooling methods to automatically select local regions of key growth patterns such as lung adenocarcinoma cells, enhancing the model's focus on local information. Additionally, we employ an interactive fusion approach to concentrate feature information within the same dimension and across dimensions, thereby improving model performance. Extensive experiments have shown that under the condition of maintaining equal computational expenses, the accuracy of DIEANet with ResNet34 as the backbone reaches 88.19%, with an AUC of 96.61%, MCC of 81.71%, and Kappa of 81.16%. Compared to seven other attention mechanisms, it achieves state-of-the-art objective metrics. Additionally, it aligns more closely with the visual attention of pathology experts under subjective visual assessment.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Compresión de Datos , Neoplasias Pulmonares , Humanos , Benchmarking , Neoplasias Pulmonares/diagnóstico
18.
Animals (Basel) ; 14(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199966

RESUMEN

Investigating fish diversity in canyon rivers through conventional fish surveys is challenging due to precipitous conditions, including steep slopes, rapid water flow, and complex habitats. Additionally, intensive construction of dams has further complicated the understanding of contemporary fish diversity in these rivers. In this study, we used the environmental DNA (eDNA) technique to assess fish diversity and examine the effects of dams on fish diversity in the Mabiehe River, a canyon river in the upper reaches of the Pearl River drainage. Water samples from 15 sampling sites were collected, yielding 9,356,148 valid sequences. Utilizing the NCBI public database, a total of 60 freshwater fish species were identified, with Carassius auratus, Cyprinus carpio, and Pelteobagrus fulvidraco being the most dominant species in the Mabiehe River. We also detected one nationally protected fish species, three provincially protected fish species, and six exotic species in this river. Furthermore, eDNA analyses demonstrated that the lotic river sections harbor more species and greater diversity than dammed sections, suggesting that dams might exert significant impacts on local fish diversity. Overall, this study supports the effectiveness of the eDNA technique as a complementary tool to traditional field surveys for monitoring fish biodiversity in canyon rivers.

19.
Plant Commun ; 5(6): 100847, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38379285

RESUMEN

Carotenoids in plant foods provide health benefits by functioning as provitamin A. One of the vital provitamin A carotenoids, ß-cryptoxanthin, is typically plentiful in citrus fruit. However, little is known about the genetic basis of ß-cryptoxanthin accumulation in citrus. Here, we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of ß-cryptoxanthin. We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of ß-cryptoxanthin accumulation through a genome-wide association study. We identified a causal gene, CitCYP97B, which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined. We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the ß-ring of ß-cryptoxanthin in a heterologous expression system. In planta experiments provided further evidence that CitCYP97B negatively regulates ß-cryptoxanthin content. Using the sequenced Citrus accessions, we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B, thereby altering ß-cryptoxanthin accumulation in fruit. Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution. Overall, these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of ß-cryptoxanthin-biofortified products.


Asunto(s)
beta-Criptoxantina , Carotenoides , Citrus , Sistema Enzimático del Citocromo P-450 , Citrus/genética , Citrus/metabolismo , beta-Criptoxantina/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Carotenoides/metabolismo , Hidroxilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo
20.
Foods ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38890844

RESUMEN

White pepper, used both as a seasoning in people's daily diets and as a medicinal herb, is typically produced by removing the pericarp of green pepper through the retting process. However, the mechanism of the retting process for peeling remains unclear. Therefore, this study aimed to investigate the changes in physicochemical factors, microbial community succession effects, and metabolites of the pepper pericarp during the pepper peeling process. The findings indicated that pre-treatment involving physical friction before the retting process effectively reduced the production time of white pepper. During the retting process, the pectinase activity increased, leading to a decrease in the pectin content in the pepper pericarp. There was a significant correlation observed between the changes in pH, pectin content, and peeling rate and the Shannon diversity index of bacteria and fungi. Prevotella, Lactococcus, and Candida were the dominant microbial genera during the retting. The functional predictions suggested that the monosaccharides degraded from the pepper pericarp could have been utilized by microbes through sugar metabolism pathways. Metabolomic analysis showed that the metabolic pathways of carbohydrates and amino acids were the main pathways altered during the pepper peeling process. The verification experiment demonstrated that the degradation of pectin into galacturonic acid by polygalacturonase was identified as the key enzyme in shortening the pepper peeling time. The structure of the pepper pericarp collapsed after losing the support of pectin, as revealed by scanning electron microscopy. These results suggest that the decomposition of the pepper pericarp was driven by key microbiota. The succession of microbial communities was influenced by the metabolites of the pepper pericarp during retting. These findings provide new insights into the retting process and serve as an important reference for the industrial production of white pepper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA