Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Odontol Scand ; 83: 553-563, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352227

RESUMEN

PURPOSE: This systematic review and meta-analysis aimed to evaluate the efficacy of two different loading methods in implant-supported removable prostheses (partial dentures and full-maxillary dentures). METHODS: As of August 2023, three electronic databases and nine oral implant-related journals had been searched. Only randomised controlled trials (RCTs) that compare immediate loading with conventional loading in implant-supported removable prostheses were included. The primary outcome was the implant survival rate. At the same time, a meta-analysis of bone-level changes was performed. Cochrane risk-of-bias tool for randomised trials (RoB 2) was used to evaluate the risk of bias in the included trials. RESULTS: A total of 16 RCTs were included, including 543 participants with 1595 implants. The included trials compared immediate loading and conventional loading in implant-supported removable prostheses. Regarding implants as the statistical unit, the immediate loading group had a statistically significant lower survival rate (RR = 0.950; 95% confidence interval [CI], (0.926, 0.974); P = 0.027; I² = 47%). When patients were regarded as statistical units, a statistically significant lower survival rate was also observed in the immediate loading group (RR = 0.929; 95% CI, (0.897, 0.961); P = 0.590; I² = 0%). When we analysed the bone level changes, a statistically significant decrease was observed in bone level in the immediate loading group compared with the conventional loading group (weighted mean difference [WMD] = -0.127; 95% CI, (-0.195, -0.059); P < 0.00001). CONCLUSION: Lower implant survival rates and a decrease in marginal bone level was observed compared to immediate loading with conventional loading.


Asunto(s)
Prótesis Dental de Soporte Implantado , Carga Inmediata del Implante Dental , Humanos , Carga Inmediata del Implante Dental/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
BMC Med ; 21(1): 500, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110931

RESUMEN

BACKGROUND: More than half of patients with tuberous sclerosis complex (TSC) suffer from drug-resistant epilepsy (DRE), and resection surgery is the most effective way to control intractable epilepsy. Precise preoperative localization of epileptogenic tubers among all cortical tubers determines the surgical outcomes and patient prognosis. Models for preoperatively predicting epileptogenic tubers using 18F-FDG PET images are still lacking, however. We developed noninvasive predictive models for clinicians to predict the epileptogenic tubers and the outcome (seizure freedom or no seizure freedom) of cortical tubers based on 18F-FDG PET images. METHODS: Forty-three consecutive TSC patients with DRE were enrolled, and 235 cortical tubers were selected as the training set. Quantitative indices of cortical tubers on 18F-FDG PET were extracted, and logistic regression analysis was performed to select those with the most important predictive capacity. Machine learning models, including logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN) models, were established based on the selected predictive indices to identify epileptogenic tubers from multiple cortical tubers. A discriminating nomogram was constructed and found to be clinically practical according to decision curve analysis (DCA) and clinical impact curve (CIC). Furthermore, testing sets were created based on new PET images of 32 tubers from 7 patients, and follow-up outcome data from the cortical tubers were collected 1, 3, and 5 years after the operation to verify the reliability of the predictive model. The predictive performance was determined by using receiver operating characteristic (ROC) analysis. RESULTS: PET quantitative indices including SUVmean, SUVmax, volume, total lesion glycolysis (TLG), third quartile, upper adjacent and standard added metabolism activity (SAM) were associated with the epileptogenic tubers. The SUVmean, SUVmax, volume and TLG values were different between epileptogenic and non-epileptogenic tubers and were associated with the clinical characteristics of epileptogenic tubers. The LR model achieved the better performance in predicting epileptogenic tubers (AUC = 0.7706; 95% CI 0.70-0.83) than the LDA (AUC = 0.7506; 95% CI 0.68-0.82) and ANN models (AUC = 0.7425; 95% CI 0.67-0.82) and also demonstrated good calibration (Hosmer‒Lemeshow goodness-of-fit p value = 0.7). In addition, DCA and CIC confirmed the clinical utility of the nomogram constructed to predict epileptogenic tubers based on quantitative indices. Intriguingly, the LR model exhibited good performance in predicting epileptogenic tubers in the testing set (AUC = 0.8502; 95% CI 0.71-0.99) and the long-term outcomes of cortical tubers (1-year outcomes: AUC = 0.7805, 95% CI 0.71-0.85; 3-year outcomes: AUC = 0.8066, 95% CI 0.74-0.87; 5-year outcomes: AUC = 0.8172, 95% CI 0.75-0.87). CONCLUSIONS: The 18F-FDG PET image-based LR model can be used to noninvasively identify epileptogenic tubers and predict the long-term outcomes of cortical tubers in TSC patients.


Asunto(s)
Epilepsia , Esclerosis Tuberosa , Humanos , Fluorodesoxiglucosa F18 , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen , Esclerosis Tuberosa/metabolismo , Reproducibilidad de los Resultados , Glucólisis , Estudios Retrospectivos
3.
Small ; 19(33): e2301438, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086125

RESUMEN

Electrocatalytic nitrogen oxidation reaction (NOR) into nitrate under ambient conditions, as an alternative to replace traditional industrial method, is a promising artificial N2 fixation strategy, especially powered by renewable energy. Here, through skillfully balancing competitive relationships between NOR and oxygen evolution reaction (OER), the nickel oxyhydroxide decorated Cu(OH)2 hybrid electrocatalyst with Cu:Ni molar ratio of 1:1 is developed, which achieves outstanding Faradaic efficiency (FE) of 18.7% and yield rate of 228.24 µmol h-1  gcat -1 at 2.0 V versus reversible hydrogen electrode (RHE) in the electrolyte of 0.1 m Na2 SO4 . Also, the hybrid catalyst maintained over five cycles (10 h each cycle) with negligible decay in performance. The synergetic effect between the components of nickel oxyhydroxide and Cu(OH)2 is found to remarkably activate N2 and suppress the activity of competitive OER, which enhances NOR performance eventually. Moreover, the conversion efficiency of solar-to-nitrate (STN) with 0.025% was obtained by coupling with a commercial solar cell. This work provides a novel avenue of rational catalysts design strategies and realizes solar-to-nitrate synthesis.

4.
Cereb Cortex ; 32(23): 5259-5272, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35195262

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults, with pathological mechanisms remaining to be fully elucidated. Fibroblast Growth Factor 13 (FGF13) encodes an intracellular protein involved in microtubule stabilization and regulation of voltage-gated sodium channels (VGSCs) function. FGF13 mutation has been identified in patients with inherent seizure, suggesting a potential association between FGF13 and the etiology of TLE. Here, we set to explore the pathological role of FGF13 in the etiology of TLE. RESULTS: We found that the expression of FGF13 was increased in the cortical lesions and CA1 region of sclerotic hippocampus and correlated with the seizure frequency in TLE patients. Also, Fgf13 expression was increased in the hippocampus of chronic TLE mice generated by kainic acid (KA) injection. Furthermore, Fgf13 knockdown or overexpression was respectively found to attenuate or potentiate the effects of KA on axonal length, somatic area and the VGSCs-mediated current in the hippocampal neurons. CONCLUSIONS: Taken together, these findings suggest that FGF13 is involved in the pathogenesis of TLE by modulating microtubule activity and neuronal excitability.


Asunto(s)
Epilepsia del Lóbulo Temporal , Factores de Crecimiento de Fibroblastos , Animales , Ratones , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Factores de Crecimiento de Fibroblastos/genética , Hipocampo/metabolismo , Ácido Kaínico , Convulsiones
5.
J Environ Manage ; 332: 117375, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716547

RESUMEN

Root-associated microorganisms regulate plant growth and development, and their distribution is likely influenced by habitat conditions. In this study, the responses of rhizosphere and root-endophytic fungi of dominant ephemeral plants to aeolian soil (AS) and grey desert soil (DS) in the Gurbantünggüt Desert were analyzed using high-throughput sequencing. This was done to understand the adaptation strategies of this vegetation in typical habitat soils from a microbial perspective. We found that the diversity of root-associated fungi of ephemeral plants differed in the two habitat soils. The diversity of rhizosphere fungi was relatively low in AS compared to DS, whereas the diversity of root-endophytic fungi was higher in AS. The community structure of root-associated fungi and relative abundances of some dominant taxa differed between the two soils. A co-occurrence network showed that the degree of coupling and interaction between root-associated fungal taxa were closer in AS than in DS and that most of the fungal taxa were cooperative in the two habitat soils. Additionally, the network properties of the root-endophytic fungi were apparent different between the two soils. Environmental factors, including electrical conductivity, soil organic carbon, carbon/nitrogen, and carbon/phosphorus ratios, were found to be key factors affecting rhizosphere fungi in DS, whereas soil available phosphorus was the main factor in AS. Several factors affect the root-endophytic fungal community and are more influential in DS than in AS. Overall, the root-associated fungal communities of ephemeral plants had different adaptation strategies to the two soils: increasing the diversity of rhizosphere fungi and their relationship with environmental factors in DS, and increasing the diversity and network relationships of root-endophytic fungi in AS. These findings provide insight into the assemblage of ephemeral plant root-associated microbial communities and the underlying environmental factors, which allows for a deeper understanding of how to construct an artificial core root microbiota to promote plant growth and resistance.


Asunto(s)
Micobioma , Suelo , Suelo/química , Carbono , Hongos , Microbiología del Suelo , Raíces de Plantas , Plantas , Rizosfera , Fósforo
6.
Mol Psychiatry ; 26(11): 6380-6393, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963286

RESUMEN

Astrocytes are integral components of synaptic transmission, and their dysfunction leads to neuropsychiatric disorders such as anxiety and depression. Liver X receptor ß (LXRß) is expressed in astrocytes, and LXRß global knockout mice shows impaired synaptic formation. In order to define the role of LXRß in astrocytes, we used a conditional Cre-loxP system to specifically remove LXRß from astrocytes. We found that this deletion caused anxiety-like but not depressive-like behaviors in adult male mice. This behavioral phenotype could be completely reproduced by selective deletion of LXRß in astrocytes in the medial prefrontal cortex (mPFC). Pyramidal neurons in layer V of mPFC are involved in mood behaviors. We found that there was an increased spontaneous excitatory synaptic transmission in layer V pyramidal neurons of the mPFC of these mice. This was concurrent with increased dendritic complexity, despite normal appearance and number of dendritic spines. In addition, gene ontology analysis of RNA sequencing revealed that deletion of astrocytic LXRß led to the enrichment of the process of synaptic transmission in mPFC. Finally, we also confirmed that renormalized excitatory synaptic transmission in layer V pyramidal neurons alleviated the anxiety in mice with astrocytic LXRß deletion in mPFC. Together, our findings reveal that astrocytic LXRß in mPFC is critical in the regulation of synaptic transmission, and this provides a potential new target for treatment of anxiety-like behavior.


Asunto(s)
Astrocitos , Corteza Prefrontal , Animales , Ansiedad/genética , Astrocitos/fisiología , Receptores X del Hígado/genética , Masculino , Ratones , Ratones Noqueados , Transmisión Sináptica/fisiología
7.
J Environ Manage ; 316: 115288, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594824

RESUMEN

The ecological environment of the Gurbantünggüt desert-oasis ecotone is extremely fragile. Ephemeral plants are an important part of the ecosystem and play an essential role in maintaining the ecological stability of the ecotone. However, few studies have focused on the growth, soil quality and system sustainability of ephemeral plants in different soils. This study was based on two typical soil types (grey desert soil, GS; aeolian soil, AS) in the aforementioned ecotone, considered four ephemeral plants (Tetracme recurvata, TR; Tetracme contorta, TC; Malcolmia scorpioides, MS; Isatis violascens, IV) as the research object, analysed plant characteristics and soil properties, and comprehensively evaluated the ephemeral plant system by analysing the soil quality index (SQI) and sustainability index (SI). The results showed that there were significant differences in biomass and nutrient accumulation between different ephemeral plants, which were significantly affected by soil types. In the two examined soils (GS and AS), the contents of nutrients and microbial carbon (MBC) and nitrogen (MBN) in the rhizosphere soil were higher than those in the bare soil (BS), and there were significant differences among different species. The key soil factors related to total biomass in GS and AS were also different. The SQI of ephemeral plants was significantly higher than that of the BS, and varied with soil types and plant species. The species with the highest SQI of the key factor data set in GS and AS were IV and TR, respectively. The SI analysis indicated that IV in GS and MS and IV in AS were sustainable, and the plant properties can be better used to assess the sustainability of ephemeral plant systems. In conclusion, ephemeral plants improved the soil quality and system sustainability of the study ecotone. Further, the growth of ephemeral plant and rhizosphere soil properties vary with plant species and soil types; thus, selecting suitable species for large-scale planting in different soil types is of great significance for improving the ecological stability of the ecotone.


Asunto(s)
Brassicaceae , Suelo , Biomasa , China , Ecosistema , Nitrógeno/análisis , Plantas , Microbiología del Suelo
8.
BMC Plant Biol ; 21(1): 165, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820543

RESUMEN

BACKGROUND: To decipher the root and microbial interaction, secondary metabolite accumulation in roots and the microbial community's succession model during the plant's growth period demands an in-depth investigation. However, till now, no comprehensive study is available on the succession of endophytic fungi and arbuscular mycorrhizal fungi (AMF) with roots of medicinal licorice plants and the effects of endophytic fungi and AMF on the secondary metabolite accumulation in licorice plant's root. RESULTS: In the current study, interaction between root and microbes in 1-3 years old medicinal licorice plant's root and rhizospheric soil was investigated. Secondary metabolites content in licorice root was determined using high-performance liquid chromatography (HPLC). The composition and diversity of endophytic and AMF in the root and soil were deciphered using high-throughput sequencing technology. During the plant's growth period, as compared to AMF, time and species significantly affected the diversity and richness of endophytic fungi, such as Ascomycota, Basidiomycota, Fusarium, Cladosporium, Sarocladium. The growth period also influenced the AMF diversity, evident by the significant increase in the relative abundance of Glomus and the significant decrease in the relative abundance of Diversispora. It indicated a different succession pattern between the endophytic fungal and AMF communities. Meanwhile, distance-based redundancy analysis and Mantel tests revealed root's water content and secondary metabolites (glycyrrhizic acid, liquiritin, and total flavonoids), which conferred endophytic fungi and AMF diversity. Additionally, plant growth significantly altered soil's physicochemical properties, which influenced the distribution of endophytic fungal and AMF communities. CONCLUSIONS: This study indicated a different succession pattern between the endophytic fungal and AMF communities. During the plant's growth period, the contents of three secondary metabolites in roots increased per year, which contributed to the overall differences in composition and distribution of endophytic fungal and AMF communities. The endophytic fungal communities were more sensitive to secondary metabolites than AMF communities. The current study provides novel insights into the interaction between rhizospheric microbes and root exudates.


Asunto(s)
Hongos/fisiología , Glycyrrhiza/microbiología , Raíces de Plantas/metabolismo , Endófitos/fisiología , Glycyrrhiza/crecimiento & desarrollo , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/crecimiento & desarrollo , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/microbiología , Micorrizas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Metabolismo Secundario
9.
Small ; 17(6): e2006770, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33470529

RESUMEN

The interface between two material phases typically exhibits unique electronic states distinct from their pure phases, thus, providing a very promising channel to construct catalysts with excellent activity and stability. Here, water-induced formation of Ni2 P-Ni12 P5 through a one-step phosphorization of nickel foam (NF) is demonstrated for the first time. The abundant interfaces endow Ni2 P-Ni12 P5 /NF with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline condition, with an overpotential of 76 mV at a current density of 10 mA cm-2 and of 147 mV at a current density of 100 mA cm-2 , and a Tafel slope of 68.0 mV dec-1 . The Ni2 P-Ni12 P5 /NF also exhibits better durability than Pt/C/NF during HER at relatively large overpotential. Density functional theory calculations show that the electronic states at the Ni2 P-Ni12 P5 interface are greatly altered, which enables optimal hydrogen adsorption, accelerates the charge transfer kinetics, and thus enhances the HER electrocatalytic activity. Superior overall water-splitting performance is also obtained by combining Ni2 P-Ni12 P5 /NF with NiFe-layered double hydroxide (LDH) oxygen evolution reaction (OER) catalyst. Overpotentials of the cell for achieving 10 mA cm-2 are only 324 mV. This work provides a facile method for the preparation of interfaces between different nickel phosphide polymorphs toward HER.

10.
BMC Med Imaging ; 21(1): 22, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568080

RESUMEN

BACKGROUND: Meningiomas typically manifest on magnetic resonance imaging (MRI) as iso- to hypointense on T1-weighted imaging and iso- to hyperintense on T2-weighted imaging. After contrast administration, they usually homogeneously enhance and exhibit a visible dural tail. Meningiomas with atypical findings may be misdiagnosed. CASE PRESENTATION: We report a 50-year-old female patient with a pathologically diagnosed fibrous meningioma (World Health Organization grade I) that exhibited ring enhancement on MRI. CONCLUSIONS: Meningiomas may rarely present with ring enhancement on MRI. The natural history and mechanisms of cystic degeneration and enhancement in the various types of meningioma require further study.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Meningioma/diagnóstico por imagen , Encéfalo/patología , Femenino , Humanos , Meningioma/patología , Persona de Mediana Edad
11.
Childs Nerv Syst ; 37(1): 253-257, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533299

RESUMEN

PURPOSE: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder characterized by hamartomas in multiple organ systems. The TSC1 and TSC2 genes have been identified as the genetic basis of TSC. Two gene tests were used for definitive genetic diagnosis. METHODS: In our study, the case of a Chinese pediatric patient with seizures, hypomelanotic macules, hyperpigmented patches, multiple parenchymal lesions in the ventricle, and developmental retardation is detailed. Whole-genome sequencing (WGS) and multiplex ligation-dependent probe amplification (MLPA) were employed to detect genetic variations and copy number variations of TSC1 and TSC2. RESULTS: A novel heterozygous nonsense mutation in the TSC2 gene (c.3751A>T, p.Lys1251Ter) was identified in a Chinese pediatric patient suffering from TSC, whose unaffected parents did not carry this mutation. The mutation was classified as "pathogenic" according to the American College of Medical Genetics (ACMG) guidelines. CONCLUSION: WGS was carried out to definitively diagnose and detect variations in the exon and noncoding region of the gene and copy number variations in the whole genome simultaneously. For diseases with complex genetic mechanisms, WGS as the first-line test can be efficient and cost-effective for clinical diagnosis.


Asunto(s)
Codón sin Sentido , Esclerosis Tuberosa , Niño , Variaciones en el Número de Copia de ADN , Humanos , Mutación , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
12.
BMC Microbiol ; 20(1): 335, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33143657

RESUMEN

BACKGROUND: Ferula sinkiangensis is an increasingly endangered medicinal plant. Arbuscular mycorrhiza fungi (AMF) are symbiotic microorganisms that live in the soil wherein they enhance nutrient uptake, stress resistance, and pathogen defense in host plants. While such AMF have the potential to contribute to the cultivation of Ferula sinkiangensis, the composition of AMF communities associated with Ferula sinkiangensis and the relationship between these fungi and other pertinent abiotic factors still remains to be clarified. RESULTS: Herein, we collected rhizosphere and surrounding soil samples at a range of depths (0-20, 20-40, and 40-60 cm) and a range of slope positions (bottom, middle, top). These samples were then subjected to analyses of soil physicochemical properties and high-throughput sequencing (Illumina MiSeq). We determined that Glomus and Diversispora species were highly enriched in all samples. We further found that AMF diversity and richness varied significantly as a function of slope position, with this variation primarily being tied to differences in relative Glomus and Diversispora abundance. In contrast, no significant relationship was observed between soil depth and overall AMF composition, although some AMF species were found to be sensitive to soil depth. Many factors significantly affected AMF community composition, including organic matter content, total nitrogen, total potassium, ammonium nitrogen, nitrate nitrogen, available potassium, total dissolvable salt levels, pH, soil water content, and slope position. We further determined that Shannon diversity index values in these communities were positively correlated with total phosphorus, nitrate-nitrogen levels, and pH values (P < 0.05), whereas total phosphorus, total dissolvable salt levels, and pH were positively correlated with Chao1 values (P < 0.05). CONCLUSION: In summary, our data revealed that Glomus and Diversispora are key AMF genera found within Ferula sinkiangensis rhizosphere soil. These fungi are closely associated with specific environmental and soil physicochemical properties, and these soil sample properties also differed significantly as a function of slope position (P < 0.05). Together, our results provide new insights regarding the relationship between AMF species and Ferula sinkiangensis, offering a theoretical basis for further studies of their development.


Asunto(s)
Ferula/microbiología , Micobioma , Micorrizas/aislamiento & purificación , Rizosfera , Biodiversidad , ADN de Hongos/genética , Glomeromycota/clasificación , Glomeromycota/genética , Glomeromycota/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Micorrizas/clasificación , Micorrizas/genética , Plantas Medicinales/microbiología , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo
13.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957914

RESUMEN

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Asunto(s)
Flavonoides/biosíntesis , Glycyrrhiza uralensis/microbiología , Glycyrrhiza/microbiología , Raíces de Plantas/microbiología , Rizoma/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Amoníaco/farmacología , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Código de Barras del ADN Taxonómico , ADN Bacteriano/genética , Endófitos/fisiología , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Flavanonas/biosíntesis , Flavanonas/aislamiento & purificación , Flavonoides/clasificación , Flavonoides/aislamiento & purificación , Glucósidos/biosíntesis , Glucósidos/aislamiento & purificación , Glycyrrhiza/efectos de los fármacos , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/efectos de los fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/metabolismo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , Nitratos/farmacología , Filogenia , Raíces de Plantas/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Rizoma/metabolismo , Estaciones del Año , Metabolismo Secundario , Suelo/química , Microbiología del Suelo , Simbiosis
14.
Appl Opt ; 56(26): 7358-7366, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29048057

RESUMEN

Risley prisms appear to be a promising solution to high-accuracy pointing and tracking. To improve the pointing accuracy of achromatic Risley prisms, an appropriate mathematical model is established, and the forward and inverse solutions are proposed. Focusing on the sources of systematic errors, an optimization method based on a genetic algorithm is proposed to identify the parameters of the physical model, including wedge angles, refractive indexes, and installations. Finally, the experimental platform is established. The pointing accuracy and the size of the blind zone are tested to prove the validity of the method. Experimental results show that the proposed method is effective to reduce the influence of manufacturing, installation, and measurement errors. The optimized pointing accuracy has been improved significantly. Within the maximum deflection angle of 3°, the maximum pointing error is reduced from 33 arcsec to less than 1 arcsec. And the angular dynamic range is found to be greater than 43 dB, able to meet the needs of the majority of applications. In addition, the test of the blind zone shows that the optimized parameters are consistent with the actual system.

15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(2): 327-31, 2014 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25039136

RESUMEN

It is difficult to distinguish the inferior alveolar nerve (IAN) from other tissues inside the IAN canal due to their similar CT values in the X image which are smaller than that of the bones. The direct reconstruction, therefore, is difficult to achieve the effects. The traditional clinical treatments mainly rely on doctors' manually drawing the X images so that some subjective results could not be avoided. This paper proposes the partition reconstruction of IAN canal based on shape features. According to the anatomical features of the IAN canal, we divided the image into three parts and treated the three parts differently. For the first, the directly part of the mandibular, we used Shape-driven Level-set Algorithm Restrained by Local Information (BSLARLI) segment IAN canal. For the second part, the mandibular body, we used Space B-spline curve fitting IAN canal's center, then along the center curve established the cross section. And for the third part, the mental foramen, we used an adaptive threshold Canny algorithm to extract IAN canal's edge to find center curve, and then along it established the cross section similarly. Finally we used the Visualization Toolkit (VTK) to reconstruct the CT data as mentioned above. The VTK reconstruction result by setting a different opacity and color values of tissues CT data can perspectively display the INA canal clearly. The reconstruction result by using this method is smoother than that using the segmentation results and the anatomical structure of mental foramen position is similar to the real tissues, so it provides an effective method for locating the spatial position of the IAN canal for implant surgeries.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Nervio Mandibular/anatomía & histología , Algoritmos , Humanos , Mandíbula/inervación
16.
Front Bioeng Biotechnol ; 12: 1381685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638320

RESUMEN

The construction of an antibacterial biological coating on titanium surface plays an important role in the long-term stability of oral implant restoration. Graphene oxide (GO) has been widely studied because of its excellent antibacterial properties and osteogenic activity. However, striking a balance between its biological toxicity and antibacterial properties remains a significant challenge with GO. ε-poly-L-lysine (PLL) has broad-spectrum antibacterial activity and ultra-high safety performance. Using Layer-by-layer self-assembly technology (LBL), different layers of PLL/GO coatings and GO self-assembly coatings were assembled on the surface of titanium sheet. The materials were characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle test. The antibacterial properties of Porphyromonas gingivalis (P.g.) were analyzed through SEM, coated plate experiment, and inhibition zone experiment. CCK-8 was used to determine the cytotoxicity of the material to MC3T3 cells, and zebrafish larvae and embryos were used to determine the developmental toxicity and inflammatory effects of the material. The results show that the combined assembly of 20 layers of GO and PLL exhibits good antibacterial properties and no biological toxicity, suggesting a potential application for a titanium-based implant modification scheme.

17.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891266

RESUMEN

Rodents, such as those that feed on plants and nest in plant roots, can significantly affect the growth and development of desert plants. The aim of this study was to investigate the effects of Rhombomys opimus disturbance on the photosynthetic characteristics and nutrient status of Haloxylon ammodendron at different growth stages in the Gurbantunggut Desert. The effects of great gerbil disturbance on the photosynthetic characteristics of H. ammodendron at different growth stages were investigated by measuring the gas exchange parameters, instantaneous water use efficiency, and chlorophyll fluorescence parameters of H. ammodendron at different ages (young, middle, and adult) under the disturbance of great gerbils. The soil nutrients in the assimilated branches and rhizosphere of H. ammodendron at different growth stages were tracked to reveal the relationship between the H. ammodendron nutrient content and gerbil disturbance. The results showed that great gerbil disturbance decreased the organic carbon content in the rhizosphere soil of adult H. ammodendron and increased the total nitrogen content in the rhizosphere soil and the nitrogen and potassium contents in the assimilated branches at each growth stage. The net photosynthetic rate and instantaneous water use efficiency of H. ammodendron decreased at each growth stage, and the maximum photochemical efficiency and non-photochemical quenching parameters of the young H. ammodendron decreased. However, the actual photochemical efficiency and photochemical parameters of the middle H. ammodendron increased. It was concluded that the disturbance of great gerbils decreased the photosynthetic capacity of H. ammodendron and increased the content of total nitrogen in the soil and nitrogen and potassium in the plant. This study revealed that the Gurbantunggut Desert great gerbil and H. ammodendron do not have a simple predation relationship. It laid a foundation for the study of the moderate disturbance threshold and better use of the mutually beneficial relationship between the two.

18.
Histol Histopathol ; 39(9): 1179-1195, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38293776

RESUMEN

Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type IIb are the predominant causes of drug-refractory epilepsy in children. Dysmorphic neurons (DNs), giant cells (GCs), and balloon cells (BCs) are the most typical pathogenic profiles in cortical lesions of TSC and FCD IIb patients. However, mechanisms underlying the pathological processes of TSC and FCD IIb remain obscure. The Plexin-B2-Sema4C signalling pathway plays critical roles in neuronal morphogenesis and corticogenesis during the development of the central nervous system. However, the role of the Plexin-B2 system in the pathogenic process of TSC and FCD IIb has not been identified. In the present study, we investigated the expression and cell distribution characteristics of Plexin-B2 and Sema4C in TSC and FCD IIb lesions with molecular technologies. Our results showed that the mRNA and protein levels of Plexin-B2 expression were significantly increased both in TSC and FCD IIb lesions versus that in the control cortex. Notably, Plexin-B2 was also predominantly observed in GCs in TSC epileptic lesions and BCs in FCD IIb lesions. In contrast, the expression of Sema4C, the ligand of Plexin-B2, was significantly decreased in DNs, GCs, and BCs in TSC and FCD IIb epileptic lesions. Additionally, Plexin-B2 and Sema4C were expressed in astrocytes and microglia cells in TSC and FCD IIb lesions. Furthermore, the expression of Plexin-B2 was positively correlated with seizure frequency in TSC and FCD IIb patients. In conclusion, our results showed the Plexin-B2-Sema4C system was abnormally expressed in cortical lesions of TSC and FCD IIb patients, signifying that the Plexin-B2-Sema4C system may play a role in the pathogenic development of TSC and FCD IIb.


Asunto(s)
Displasia Cortical Focal , Malformaciones del Desarrollo Cortical de Grupo I , Proteínas del Tejido Nervioso , Semaforinas , Esclerosis Tuberosa , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/patología , Epilepsia , Displasia Cortical Focal/metabolismo , Displasia Cortical Focal/patología , Células Gigantes/metabolismo , Células Gigantes/patología , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Neuronas/patología , Semaforinas/metabolismo , Semaforinas/genética , Semaforinas/biosíntesis , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología
19.
Plant Physiol Biochem ; 202: 107986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651954

RESUMEN

To gain insights into the adaptive characteristics of ephemeral plants and enrich their potential for resource exploitation, the adaptive changes in two highly dominant species (Malcolmia scorpioides and Isatis violascens) to soil habitats (aeolian soil, AS; grey desert soil, GS) were investigated from the aspects of root morphology, physiology, and metabolism in this study. The results revealed that changes in root morphology and enzyme activity were affected by soil habitat. Total root length (TRL), root volume (RV) and root surface area (RSA) were higher in GS than in AS. The levels of proline (Pro), glutathione (GSH), soluble sugar (SS), and lysine (Lys) were higher in GS than in AS. Untargeted LC-MS metabolomics indicates that root metabolites of both species differed among the two soil habitats. Root responses to different soil habitats mainly affected some metabolic pathways. A total of 780 metabolites were identified, common differential metabolites (DMs) in both species included amino acids, fatty acids, organic acids, carbohydrates, benzene and derivatives, and flavonoids, which were mainly involved in carbohydrate metabolism, amino acid metabolism, flavonoid biosynthesis and fatty acid metabolism, and their abundance varied among different habitats and species. Some key DMs were significantly related to root morphology and enzyme activity, and indole, malonate, quercetin, uridine, tetrahydroharmine, and gluconolactone were important metabolites associated with root growth. Therefore, the response changes in root growth and metabolite of ephemeral plants in response to soil habitats reflect their ecological adaptation, and lay a foundation for the exploitation of plant resources in various habitats.


Asunto(s)
Brassicaceae , Metabolómica , Aminoácidos , Aclimatación , Benceno
20.
Front Pharmacol ; 14: 1033859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435496

RESUMEN

Introduction: Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. Methods: We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. Results: The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Conclusion: Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA