Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(23): e2309793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148305

RESUMEN

The nerve guidance conduits incorporated with stem cells, which can differentiate into the Schwann cells (SCs) to facilitate myelination, shows great promise for repairing the severe peripheral nerve injury. The innovation of advanced hydrogel materials encapsulating stem cells, is highly demanded for generating supportive scaffolds and adaptive microenvironment for nerve regeneration. Herein, this work demonstrates a novel strategy in regulating regenerative microenvironment for peripheral nerve repair with a biodegradable conductive hydrogel scaffold, which can offer multifunctional capabilities in immune regulation, enhancing angiogenesis, driving SCs differentiation, and promoting axon regrowth. The biodegradable conductive hydrogel is constructed by incorporation of polydopamine-modified silicon phosphorus (SiP@PDA) nanosheets into a mixture of methacryloyl gelatin and decellularized extracellular matrix (GelMA/ECM). The biomimetic electrical microenvironment performs an efficacious strategy to facilitate macrophage polarization toward a pro-healing phenotype (M2), meanwhile the conductive hydrogel supports vascularization in regenerated tissue through sustained Si element release. Furthermore, the MSCs 3D-cultured in GelMA/ECM-SiP@PDA conductive hydrogel exhibits significantly increased expression of genes associated with SC-like cell differentiation, thus facilitating the myelination and axonal regeneration. Collectively, both the in vitro and in vivo studies demonstrates that the rationally designed biodegradable multifunctional hydrogel significantly enhances nerve tissues repair.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Hidrogeles/química , Animales , Regeneración Nerviosa/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Gelatina/química , Polímeros/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células de Schwann/citología , Células de Schwann/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratones , Andamios del Tejido/química , Células Madre/citología , Conductividad Eléctrica , Indoles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metacrilatos
2.
J Biol Chem ; 294(13): 4946-4955, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30709906

RESUMEN

Hypoxia-inducible factor-2α (HIF2α) is a nuclear transcription factor that plays a critical role in cell survival including metabolic adaptation under hypoxia as well as normoxia, but whether HIF2α contributes to the control of whole-body metabolic balance is unclear. In this study, we found that the hypothalamic HIF2α protein level rapidly increases in young mice that are centrally stimulated with insulin. However, this insulin-induced HIF2α up-regulation is substantially attenuated in mice of advanced age. This attenuation is comparable with the effect of high-calorie feeding in young mice. Of note, unlike high-calorie feeding conditions, age-dependent HIF2α attenuation occurs without impaired activation of the hypothalamic IR/IRS-2/AKT/FOXO1 pathway in response to insulin. Molecular and physiological analyses revealed that hypothalamic HIF2α contributes to the action of central insulin in regulation of proopiomelanocortin (Pomc) gene expression and food intake. HIF2α knockout in POMC neurons led to age-dependent excess weight gain and fat increase, a phenotype that was associated with a mild degree of glucose intolerance and insulin resistance. In conclusion, hypothalamic HIF2α responds to insulin, and the up-regulation is involved in adaptive metabolic regulation as age increases, whereas impairment of HIF2α in the hypothalamus contributes to weight gain and glucose disorders in age-dependent manners.


Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Intolerancia a la Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Envejecimiento/genética , Envejecimiento/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Hipotálamo/patología , Insulina/genética , Ratones , Ratones Transgénicos , Proopiomelanocortina/biosíntesis , Proopiomelanocortina/genética
3.
J Cell Mol Med ; 22(1): 25-37, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29063730

RESUMEN

Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.


Asunto(s)
Factores de Crecimiento de Fibroblastos/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Terapia Molecular Dirigida , Traumatismos de la Médula Espinal/fisiopatología
4.
J Cell Mol Med ; 22(6): 3086-3096, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575654

RESUMEN

Spermidine has therapeutic effects in many diseases including as heart diastolic function, myopathic defects and neurodegenerative disorders via autophagy activation. Autophagy has been found to mitigate cell apoptosis in intervertebral disc degeneration (IDD). Accordingly, we theorize that spermidine may have beneficial effects on IDD via autophagy stimulation. In this study, spermidine's effect on IDD was evaluated in tert-butyl hydroperoxide (TBHP)-treated nucleus pulposus cells of SD rats in vitro as well as in a puncture-induced rat IDD model. We found that autophagy was actuated by spermidine in nucleus pulposus cells. In addition, spermidine treatment weakened the apoptotic effects of TBHP in nucleus pulposus cells. Spermidine increased the expression of anabolic proteins including Collagen-II and aggrecan and decreased the expression of catabolic proteins including MMP13 and Adamts-5. Additionally, autophagy blockade using 3-MA reversed the beneficial impact of spermidine against nucleus pulposus cell apoptosis. Autophagy was thus important for spermidine's therapeutic effect on IDD. Spermidine-treated rats had an accentuated T2-weighted signal and a diminished histological degenerative grade than vehicle-treated rats, showing that spermidine inhibited intervertebral disc degeneration in vivo. Thus, spermidine protects nucleus pulposus cells against apoptosis through autophagy activation and improves disc, which may be beneficial for the treatment of IDD.


Asunto(s)
Degeneración del Disco Intervertebral/tratamiento farmacológico , Disco Intervertebral/efectos de los fármacos , Núcleo Pulposo/efectos de los fármacos , Espermidina/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/inducido químicamente , Degeneración del Disco Intervertebral/fisiopatología , Núcleo Pulposo/patología , Cultivo Primario de Células , Ratas , terc-Butilhidroperóxido/toxicidad
5.
Cell Physiol Biochem ; 47(3): 948-956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29895019

RESUMEN

BACKGROUND/AIMS: Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are essential for proper development, survival, growth, and maintenance of neurons in the central and peripheral nervous systems. However, because bFGF and NGF have short half-life and rapid diffusion rate, they have limited clinical efficacy. Thus, there is an urgent need to develop an effective delivery system to protect bFGF and NGF from proteolysis while maintaining their normal bioactivities. METHODS: To more efficiently deliver bFGF and NGF, we used a coacervate (synthesized with heparin and a biodegradable polycation at mass ratio of 500: 100). The maximal package loads of GFs in coacervate were determined by Western Blotting; release efficiency of bFGF and NGF was measured by ELISA. Additionally, we evaluated the effect of bFGF and NGF on the viability, survival, and proliferation of neurons by MTT assay, BrdU cell proliferation, and calcein staining. RESULTS: Our coacervate incorporated bFGF and NGF and continuously released them for at least three weeks. This enhanced the growth and proliferation of PC12 cells and SH-SY5Y cells. Moreover, co-delivery of bFGF and NGF using coacervate was more neuroprotective than free application of both factors or coacervate delivery of each GF separately. CONCLUSIONS: Dual delivery of bFGF and NGF binding coacervate was neuroprotective via stimulating the growth and proliferation of neurons.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Humanos , Neuronas/citología , Células PC12 , Ratas
6.
J Cell Mol Med ; 21(11): 3010-3022, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28842949

RESUMEN

In this study, we examined the neuroprotective effects and anti-inflammatory properties of Dl-3-n-butylphthalide (NBP) in Sprague-Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL-positive cells at 7 days post-injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF-κB expression at 1 day post-injury. In a co-culture system with BV-2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV-2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV-2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF-κB expression in BV-2 cells. Our findings demonstrate that NBP may have neuroprotective and anti-inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF-κB signalling.


Asunto(s)
Antiinflamatorios/farmacología , Benzofuranos/farmacología , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Línea Celular , Técnicas de Cocultivo , Femenino , Regulación de la Expresión Génica , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Microglía/citología , Microglía/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/inmunología , Células PC12 , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
7.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28208696

RESUMEN

Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose­regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3ß, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of ß-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3ß, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Valproico/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismo , Proteína X Asociada a bcl-2/metabolismo
8.
J Cell Mol Med ; 20(6): 1062-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26769343

RESUMEN

After spinal cord injury (SCI), disruption of blood-spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF-induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF-induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K-Akt-Rac1 signalling pathway.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Transducción de Señal , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/patología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Animales , Cromonas/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor de Crecimiento Epidérmico/administración & dosificación , Femenino , Glucosa/deficiencia , Humanos , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Oxígeno , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
IUBMB Life ; 68(9): 735-47, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27350596

RESUMEN

Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Melanocitos/efectos de los fármacos , Vitíligo/genética , Línea Celular , Movimiento Celular/genética , Epidermis/efectos de los fármacos , Epidermis/patología , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/genética , Humanos , MAP Quinasa Quinasa 4/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Interferente Pequeño/genética , Vitíligo/tratamiento farmacológico , Vitíligo/patología , Proteína de Unión al GTP rac1/genética
11.
J Cell Mol Med ; 19(3): 595-607, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25533999

RESUMEN

Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.


Asunto(s)
Cardiotónicos/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Línea Celular , Cromonas/farmacología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Flavonoides/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Morfolinas/farmacología , Daño por Reperfusión Miocárdica/patología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , terc-Butilhidroperóxido/toxicidad
12.
J Cell Mol Med ; 18(3): 542-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24447518

RESUMEN

Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the proliferation and migration of rat pulmonary arterial smooth muscle cells (SMCs) under hypoxia, and investigated the underlying mechanism and the relationship with autophagy. Our data showed that hypoxia activated autophagy significantly at 24 hrs. The addition of exogenous apelin decreased the level of autophagy and further inhibited pulmonary arterial SMC (PASMC) proliferation via activating downstream phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/the mammalian target of Rapamycin (mTOR) signal pathways. The inhibition of the apelin receptor (APJ) system by siRNA abolished the inhibitory effect of apelin in PASMCs under hypoxia. This study provides the evidence that exogenous apelin treatment contributes to inhibit the proliferation and migration of PASMCs by regulating the level of autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Miocitos del Músculo Liso/citología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Adipoquinas , Animales , Apelina , Ciclo Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Arteria Pulmonar/citología , ARN Interferente Pequeño/metabolismo , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
13.
J Transl Med ; 12: 130, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24884850

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress-induced apoptosis plays a major role in various diseases, including spinal cord injury (SCI). Nerve growth factor (NGF) show neuroprotective effect and improve the recovery of SCI, but the relations of ER stress-induced apoptosis and the NGF therapeutic effect in SCI still unclear. METHODS: Young adult female Sprague-Dawley rats's vertebral column was exposed and a laminectomy was done at T9 vertebrae and moderate contusion injuries were performed using a vascular clip. NGF stock solution was diluted with 0.9% NaCl and administered intravenously at a dose of 20 µg/kg/day after SCI and then once per day until they were executed. Subsequently, the rats were executed at 1d, 3 d, 7d and 14d. The locomotor activities of SCI model rats were tested by the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test and footprint analysis. In addition, Western blot analysis was performed to identify the expression of ER-stress related proteins including CHOP, GRP78 and caspase-12 both in vivo and in vitro. The level of cell apoptosis was determined by TUNEL in vivo and Flow cytometry in vitro. Relative downstream signals Akt/GSK-3ß and ERK1/2were also analyzed with or without inhibitors in vitro. RESULTS: Our results demonstrated that ER stress-induced apoptosis was involved in the injury of SCI model rats. NGF administration improved the motor function recovery and increased the neurons survival in the spinal cord lesions of the model rats. NGF decreases neuron apoptosis which measured by TUNEL and inhibits the activation of caspase-3 cascade. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 are inhibited by NGF treatment. Meanwhile, NGF administration also increased expression of growth-associated protein 43 (GAP43). The administration of NGF activated downstream signals Akt/GSK-3ß and ERK1/2 in ER stress cell model in vitro. CONCLUSION: The neuroprotective role of NGF in the recovery of SCI is related to the inhibition of ER stress-induced cell death via the activation of downstream signals, also suggested a new trend of NGF translational drug development in the central neural system injuries which involved in the regulation of chronic ER stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Traumatismos de la Médula Espinal/patología , Estrés Fisiológico , Animales , Conducta Animal , Retículo Endoplásmico/patología , Femenino , Células PC12 , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo
14.
Int Immunopharmacol ; 134: 112257, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759366

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS: In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS: Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION: Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipoxia-Isquemia Encefálica , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Vitamina K 2 , Animales , Sirtuina 1/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología , Vitamina K 2/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas , Neuronas/efectos de los fármacos , Neuronas/patología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo
15.
ACS Nano ; 18(1): 245-263, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117780

RESUMEN

Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanofibras , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Antígeno B7-H1 , Nanofibras/uso terapéutico , Terapia Combinada , Inmunoterapia/métodos , Microambiente Tumoral
16.
Adv Mater ; 36(14): e2310483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198600

RESUMEN

Electrical stimulation (ES) has shown beneficial effects in repairing injured tissues. However, current ES techniques that use tissue-traversing leads and bulky external power suppliers have significant limitations in translational medicine. Hence, exploring noninvasive in vivo ES to provide controllable electrical cues in tissue engineering is an imminent necessity. Herein, a conductive hydrogel with in situ electrical generation capability as a biodegradable regeneration scaffold and wireless ES platform for spinal cord injury (SCI) repair is demonstrated. When a soft insulated metal plate is placed on top of the injury site as a wireless power transmitter, the conductive hydrogel implanted at the injury site can serve as a wireless power receiver, and the capacitive coupling between the receiver and transmitter can generate an alternating current in the hydrogel scaffold owing to electrostatic induction effect. In a complete transection model of SCI rats, the implanted conductive hydrogels with capacitive-coupling in situ ES enhance functional recovery and neural tissue repair by promoting remyelination, accelerating axon regeneration, and facilitating endogenous neural stem cell differentiation. This facile wireless-powered electroactive-hydrogel strategy thus offers on-demand in vivo ES with an adjustable timeline, duration, and strength and holds great promise in translational medicine.


Asunto(s)
Regeneración Nerviosa , Traumatismos de la Médula Espinal , Ratas , Animales , Axones , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/terapia , Estimulación Eléctrica , Andamios del Tejido
17.
Mil Med Res ; 11(1): 31, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797843

RESUMEN

Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.


Asunto(s)
Envejecimiento , Genómica , Proteómica , Medicina Regenerativa , Envejecimiento/fisiología , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Genómica/métodos , Proteómica/métodos , Metabolómica/métodos , Epigenómica/métodos , Multiómica
18.
Mil Med Res ; 10(1): 36, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587531

RESUMEN

Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tejidos Blandos , Humanos , Piel , Cicatrización de Heridas
19.
Bioact Mater ; 22: 274-290, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36263097

RESUMEN

Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.

20.
Mil Med Res ; 10(1): 38, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592342

RESUMEN

The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Biología Computacional , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA