Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 42(18): e114990, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548337

RESUMEN

The building blocks for RNA and DNA are made in the cytosol, meaning mitochondria depend on the import and salvage of ribonucleoside triphosphates (rNTPs) and deoxyribonucleoside triphosphates (dNTPs) for the synthesis of their own genetic material. While extensive research has focused on mitochondrial dNTP homeostasis due to its defects being associated with various mitochondrial DNA (mtDNA) depletion and deletion syndromes, the investigation of mitochondrial rNTP homeostasis has received relatively little attention. In this issue of the EMBO Journal, Grotehans et al provide compelling evidence of a major role for NME6, a mitochondrial nucleoside diphosphate kinase, in the conversion of pyrimidine ribonucleoside diphosphates into the corresponding triphosphates. These data also suggest a significant physiological role for NME6, as its absence results in the depletion of mitochondrial transcripts and destabilization of the electron transport chain (Grotehans et al, 2023).


Asunto(s)
Ribonucleósidos , Ribonucleótidos , Ribonucleótidos/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Nucleótidos
2.
Proc Natl Acad Sci U S A ; 117(25): 14306-14313, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513727

RESUMEN

Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Inestabilidad Genómica/fisiología , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , Animales , Daño del ADN , Femenino , Dosificación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos , Proteína 1 que Contiene Dominios SAM y HD/genética
3.
PLoS Genet ; 14(3): e1007315, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29601571

RESUMEN

Ribonucleotides (rNMPs) are frequently incorporated during replication or repair by DNA polymerases and failure to remove them leads to instability of nuclear DNA (nDNA). Conversely, rNMPs appear to be relatively well-tolerated in mitochondrial DNA (mtDNA), although the mechanisms behind the tolerance remain unclear. We here show that the human mitochondrial DNA polymerase gamma (Pol γ) bypasses single rNMPs with an unprecedentedly high fidelity and efficiency. In addition, Pol γ exhibits a strikingly low frequency of rNMP incorporation, a property, which we find is independent of its exonuclease activity. However, the physiological levels of free rNTPs partially inhibit DNA synthesis by Pol γ and render the polymerase more sensitive to imbalanced dNTP pools. The characteristics of Pol γ reported here could have implications for forms of mtDNA depletion syndrome (MDS) that are associated with imbalanced cellular dNTP pools. Our results show that at the rNTP/dNTP ratios that are expected to prevail in such disease states, Pol γ enters a polymerase/exonuclease idling mode that leads to mtDNA replication stalling. This could ultimately lead to mtDNA depletion and, consequently, to mitochondrial disease phenotypes such as those observed in MDS.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/biosíntesis , Desoxirribonucleósidos/metabolismo , Fosfatos/metabolismo , Animales , ADN Polimerasa gamma/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
J Biol Chem ; 294(44): 15889-15897, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300555

RESUMEN

The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in WT postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in WT hearts.


Asunto(s)
Desoxirribonucleótidos/biosíntesis , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Animales , Replicación del ADN , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(47): 12466-12471, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109257

RESUMEN

Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.


Asunto(s)
ADN Polimerasa gamma/fisiología , Desoxirribonucleótidos/fisiología , Genoma Mitocondrial/fisiología , Mitocondrias/fisiología , Saccharomyces cerevisiae/fisiología , Núcleo Celular/fisiología , Citoplasma/fisiología , Reparación de la Incompatibilidad de ADN/fisiología , Replicación del ADN/fisiología , ADN Mitocondrial/metabolismo , Inestabilidad Genómica
6.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045981

RESUMEN

A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies.IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Mutagénesis , Pirofosfatasas/genética , Ribavirina/farmacología , Antivirales/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Hepacivirus/genética , Hepacivirus/crecimiento & desarrollo , Hepacivirus/metabolismo , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Nucleótidos/metabolismo , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Ribavirina/metabolismo , Transducción de Señal
7.
J Biol Chem ; 291(1): 393-401, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26499799

RESUMEN

Yeast Mec1, the ortholog of human ATR, is the apical protein kinase that initiates the cell cycle checkpoint in response to DNA damage and replication stress. The basal activity of Mec1 kinase is activated by cell cycle phase-specific activators. Three distinct activators stimulate Mec1 kinase using an intrinsically disordered domain of the protein. These are the Ddc1 subunit of the 9-1-1 checkpoint clamp (ortholog of human and Schizosaccharomyces pombe Rad9), the replication initiator Dpb11 (ortholog of human TopBP1 and S. pombe Cut5), and the multifunctional nuclease/helicase Dna2. Here, we use small peptides to determine the requirements for Mec1 activation. For Ddc1, we identify two essential aromatic amino acids in a hydrophobic environment that when fused together are proficient activators. Using this increased insight, we have been able to identify homologous motifs in S. pombe Rad9 that can activate Mec1. Furthermore, we show that a 9-amino acid Dna2-based peptide is sufficient for Mec1 activation. Studies with mutant activators suggest that binding of an activator to Mec1 is a two-step process, the first step involving the obligatory binding of essential aromatic amino acids to Mec1, followed by an enhancement in binding energy through interactions with neighboring sequences.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/química , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Prolina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química
8.
J Biol Chem ; 291(26): 13436-47, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129217

RESUMEN

The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/química , Multimerización de Proteína , Proteínas de la Ataxia Telangiectasia Mutada/genética , Humanos , Dominios Proteicos , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
9.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754021

RESUMEN

PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance. In this review, we focus on recent advances in biochemical and crystallographic studies of PrimPol, as well as in identification of new protein-protein interaction partners. Furthermore, we discuss the possible functions of PrimPol in both the nucleus and the mitochondria.


Asunto(s)
Daño del ADN , ADN Primasa/química , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/química , Enzimas Multifuncionales/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografía , Replicación del ADN , ADN Mitocondrial/genética , Inestabilidad Genómica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(41): 16510-5, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23012404

RESUMEN

Transcription factor A (TFAM) functions as a DNA packaging factor in mammalian mitochondria. TFAM also binds sequence-specifically to sites immediately upstream of mitochondrial promoters, but there are conflicting data regarding its role as a core component of the mitochondrial transcription machinery. We here demonstrate that TFAM is required for transcription in mitochondrial extracts as well as in a reconstituted in vitro transcription system. The absolute requirement of TFAM can be relaxed by conditions that allow DNA breathing, i.e., low salt concentrations or negatively supercoiled DNA templates. The situation is thus very similar to that described in nuclear RNA polymerase II-dependent transcription, in which the free energy of supercoiling can circumvent the need for a subset of basal transcription factors at specific promoters. In agreement with these observations, we demonstrate that TFAM has the capacity to induce negative supercoils in DNA, and, using the recently developed nucleobase analog FRET-pair tC(O)-tC(nitro), we find that TFAM distorts significantly the DNA structure. Our findings differ from recent observations reporting that TFAM is not a core component of the mitochondrial transcription machinery. Instead, our findings support a model in which TFAM is absolutely required to recruit the transcription machinery during initiation of transcription.


Asunto(s)
Proteínas de Unión al ADN/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Secuencia de Bases , Sitios de Unión/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Immunoblotting , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Células Sf9 , Cloruro de Sodio/farmacología , Espectrofotometría , Spodoptera , Factores de Transcripción/metabolismo
11.
EMBO Rep ; 13(12): 1130-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23090476

RESUMEN

The mechanisms of mitochondrial DNA replication have been hotly debated for a decade. The strand-displacement model states that lagging-strand DNA synthesis is initiated from the origin of light-strand DNA replication (OriL), whereas the strand-coupled model implies that OriL is dispensable. Mammalian mitochondria cannot be transfected and the requirements of OriL in vivo have therefore not been addressed. We here use in vivo saturation mutagenesis to demonstrate that OriL is essential for mtDNA maintenance in the mouse. Biochemical and bioinformatic analyses show that OriL is functionally conserved in vertebrates. Our findings strongly support the strand-displacement model for mtDNA replication.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial , Mutagénesis , Origen de Réplica/genética , Animales , Secuencia Conservada , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Humanos , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
12.
Nucleic Acids Res ; 40(20): 10334-44, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22965135

RESUMEN

In human mitochondria the transcription machinery generates the RNA primers needed for initiation of DNA replication. A critical feature of the leading-strand origin of mitochondrial DNA replication is a CG-rich element denoted conserved sequence block II (CSB II). During transcription of CSB II, a G-quadruplex structure forms in the nascent RNA, which stimulates transcription termination and primer formation. Previous studies have shown that the newly synthesized primers form a stable and persistent RNA-DNA hybrid, a R-loop, near the leading-strand origin of DNA replication. We here demonstrate that the unusual behavior of the RNA primer is explained by the formation of a stable G-quadruplex structure, involving the CSB II region in both the nascent RNA and the non-template DNA strand. Based on our data, we suggest that G-quadruplex formation between nascent RNA and the non-template DNA strand may be a regulated event, which decides the fate of RNA primers and ultimately the rate of initiation of DNA synthesis in human mitochondria.


Asunto(s)
ADN Mitocondrial/química , G-Cuádruplex , ARN/química , Dicroismo Circular , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , ARN Mitocondrial , Terminación de la Transcripción Genética , Transcripción Genética
13.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811160

RESUMEN

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Asunto(s)
Proteínas Bacterianas , ADN de Cadena Simple , Proteínas de Unión al ADN , Enterococcus faecalis , Plásmidos , Plásmidos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Unión Proteica , Conjugación Genética/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Modelos Moleculares , Transferencia de Gen Horizontal , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(37): 16072-7, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20798345

RESUMEN

The human mitochondrial transcription machinery generates the primers required for initiation of leading-strand DNA replication. According to one model, the 3' end of the primer is defined by transcription termination at conserved sequence block II (CSB II) in the mitochondrial DNA control region. We here demonstrate that this site-specific termination event is caused by G-quadruplex structures formed in nascent RNA upon transcription of CSB II. We also demonstrate that a poly-dT stretch downstream of CSB II has a modest stimulatory effect on the termination efficiency. The mechanism is reminiscent of Rho-independent transcription termination in prokaryotes, with the exception that a G-quadruplex structure replaces the hairpin loop formed in bacterial mRNA during transcription of terminator sequences.


Asunto(s)
Cartilla de ADN/genética , G-Cuádruplex , Mitocondrias/química , ARN/química , Regiones Terminadoras Genéticas , Transcripción Genética , Secuencia Conservada , Mitocondrias/genética , Datos de Secuencia Molecular
15.
Methods Mol Biol ; 2615: 293-314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807800

RESUMEN

Impaired mitochondrial DNA (mtDNA) maintenance, due to, e.g., defects in the replication machinery or an insufficient dNTP supply, underlies a number of mitochondrial disorders. The normal process of mtDNA replication leads to the incorporation of multiple single ribonucleotides (rNMPs) per mtDNA molecule. Given that embedded rNMPs alter the stability and properties of the DNA, they may have consequences for mtDNA maintenance and thereby for mitochondrial disease. They also serve as a readout of the intramitochondrial NTP/dNTP ratios. In this chapter, we describe a method for the determination of mtDNA rNMP content using alkaline gel electrophoresis and Southern blotting. This procedure is suited for the analysis of mtDNA in total genomic DNA preparations as well as in purified form. Moreover, it can be performed using equipment found in most biomedical laboratories, allows the simultaneous analysis of 10-20 samples depending on the gel system employed, and can be modified for the analysis of other mtDNA modifications.


Asunto(s)
ADN Mitocondrial , Ribonucleótidos , ADN Mitocondrial/genética , Ribonucleótidos/metabolismo , Mitocondrias/metabolismo , Nucleótidos , Replicación del ADN
16.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696576

RESUMEN

Mitochondria are central to numerous metabolic pathways whereby mitochondrial dysfunction has a profound impact and can manifest in disease. The consequences of mitochondrial dysfunction can be ameliorated by adaptive responses that rely on crosstalk from the mitochondria to the rest of the cell. Such mito-cellular signalling slows cell cycle progression in mitochondrial DNA-deficient (ρ0) Saccharomyces cerevisiae cells, but the initial trigger of the response has not been thoroughly studied. Here, we show that decreased mitochondrial membrane potential (ΔΨm) acts as the initial signal of mitochondrial stress that delays G1-to-S phase transition in both ρ0 and control cells containing mtDNA. Accordingly, experimentally increasing ΔΨm was sufficient to restore timely cell cycle progression in ρ0 cells. In contrast, cellular levels of oxidative stress did not correlate with the G1-to-S delay. Restored G1-to-S transition in ρ0 cells with a recovered ΔΨm is likely attributable to larger cell size, whereas the timing of G1/S transcription remained delayed. The identification of ΔΨm as a regulator of cell cycle progression may have implications for disease states involving mitochondrial dysfunction.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Potencial de la Membrana Mitocondrial , División Celular , Tamaño de la Célula , Reacciones Cruzadas
17.
Antioxid Redox Signal ; 36(13-15): 885-905, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015960

RESUMEN

Significance: The small, multicopy mitochondrial genome (mitochondrial DNA [mtDNA]) is essential for efficient energy production, as alterations in its coding information or a decrease in its copy number disrupt mitochondrial ATP synthesis. However, the mitochondrial replication machinery encounters numerous challenges that may limit its ability to duplicate this important genome and that jeopardize mtDNA stability, including various lesions in the DNA template, topological stress, and an insufficient nucleotide supply. Recent Advances: An ever-growing array of DNA repair or maintenance factors are being reported to localize to the mitochondria. We review current knowledge regarding the mitochondrial factors that may contribute to the tolerance or repair of various types of changes in the mitochondrial genome, such as base damage, incorporated ribonucleotides, and strand breaks. We also discuss the newly discovered link between mtDNA instability and activation of the innate immune response. Critical Issues: By which mechanisms do mitochondria respond to challenges that threaten mtDNA maintenance? What types of mtDNA damage are repaired, and when are the affected molecules degraded instead? And, finally, which forms of mtDNA instability trigger an immune response, and how? Future Directions: Further work is required to understand the contribution of the DNA repair and damage-tolerance factors present in the mitochondrial compartment, as well as the balance between mtDNA repair and degradation. Finally, efforts to understand the events underlying mtDNA release into the cytosol are warranted. Pursuing these and many related avenues can improve our understanding of what goes wrong in mitochondrial disease. Antioxid. Redox Signal. 36, 885-905.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Citosol/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/metabolismo
18.
J Biol Chem ; 285(39): 29729-37, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20622008

RESUMEN

The multiprotein Mediator complex is an important regulator of RNA polymerase II-dependent genes in eukaryotic cells. In contrast to the situation in many other eukaryotes, the conserved Med15 protein is not a stable component of Mediator isolated from fission yeast. We here demonstrate that Med15 exists in a protein complex together with Hrp1, a CHD1 ATP-dependent chromatin-remodeling protein. The Med15-Hrp1 subcomplex is not a component of the core Mediator complex but can interact with the L-Mediator conformation. Deletion of med15(+) and hrp1(+) causes very similar effects on global steady-state levels of mRNA, and genome-wide analyses demonstrate that Med15 associates with a distinct subset of Hrp1-bound gene promoters. Our findings therefore indicate that Mediator may directly influence histone density at regulated promoters.


Asunto(s)
ADN Helicasas/metabolismo , Genoma Fúngico/fisiología , Histonas/metabolismo , Complejo Mediador/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transactivadores/metabolismo , ADN Helicasas/genética , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Histonas/genética , Complejo Mediador/genética , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transactivadores/genética
19.
Mitochondrion ; 61: 179-187, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34728429

RESUMEN

The integrity of mitochondrial DNA (mtDNA) isolated from solid tissues is critical for analyses such as long-range PCR, but is typically assessed under conditions that fail to provide information on the individual mtDNA strands. Using denaturing gel electrophoresis, we show that commonly-used isolation procedures generate mtDNA containing several single-strand breaks per strand. Through systematic comparison of DNA isolation methods, we identify a procedure yielding the highest integrity of mtDNA that we demonstrate displays improved performance in downstream assays. Our results highlight the importance of isolation method choice, and serve as a resource to researchers requiring high-quality mtDNA from solid tissues.


Asunto(s)
ADN Mitocondrial/aislamiento & purificación , Mitocondrias/genética , Envejecimiento , Animales , Roturas del ADN de Cadena Simple , Variaciones en el Número de Copia de ADN , Ratones , Ratones Endogámicos C57BL , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
20.
FEBS Lett ; 593(13): 1554-1565, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31093968

RESUMEN

The incorporation of ribonucleotides (rNMPs) into DNA during genome replication has gained substantial attention in recent years and has been shown to be a significant source of genomic instability. Studies in yeast and mammals have shown that the two genomes, the nuclear DNA (nDNA) and the mitochondrial DNA (mtDNA), differ with regard to their rNMP content. This is largely due to differences in rNMP repair - whereas rNMPs are efficiently removed from the nuclear genome, mitochondria lack robust mechanisms for removal of single rNMPs incorporated during DNA replication. In this minireview, we describe the processes that determine the frequency of rNMPs in the mitochondrial genome and summarise recent findings regarding the effect of incorporated rNMPs on mtDNA stability and function.


Asunto(s)
ADN Mitocondrial/metabolismo , Ribonucleótidos/metabolismo , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA