Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Sci ; 114(9): 3740-3749, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37430466

RESUMEN

Vasohihibin-2 (VASH2) is a homolog of vasohibin-1 (VASH1) and is overexpressed in various cancers. Vasohihibin-2 acts on both cancer cells and cancer microenvironmental cells. Previous analyses have shown that VASH2 promotes cancer progression and abrogation of VASH2 results in significant anticancer effects. We therefore propose VASH2 to be a practical molecular target for cancer treatment. Modifications of antisense oligonucleotide (ASO) such as bridged nucleic acids (BNA)-based modification increases the specificity and stability of ASO, and are now applied to the development of a number of oligonucleotide-based drugs. Here we designed human VASH2-ASOs, selected an optimal one, and developed 2',4'-BNA-based VASH2-ASO. When systemically administered, naked 2',4'-BNA-based VASH2-ASO accumulated in the liver and showed its gene-silencing activity. We then examined the effect of 2',4'-BNA-based VASH2-ASO in liver cancers. Intraperitoneal injection of naked 2',4'-BNA-based VASH2-ASO exerted a potent antitumor effect on orthotopically inoculated human hepatocellular carcinoma cells. The same manipulation also showed potent antitumor activity on the splenic inoculation of human colon cancer cells for liver metastasis. These results provide a novel strategy for the treatment of primary as well as metastatic liver cancers by using modified ASOs targeting VASH2.


Asunto(s)
Neoplasias Hepáticas , Oligonucleótidos Antisentido , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Línea Celular , Factores de Transcripción , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas Angiogénicas
2.
Mol Pharm ; 20(4): 2029-2038, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862642

RESUMEN

Two-chain hepatocyte growth factor (tcHGF), the mature form of HGF, is associated with malignancy and anticancer drug resistance; therefore, its quantification is an important indicator for cancer diagnosis. In tumors, activated tcHGF hardly discharges into the systemic circulation, indicating that tcHGF is an excellent target for molecular imaging using positron emission tomography (PET). We recently discovered HGF-inhibitory peptide-8 (HiP-8) that binds specifically to human tcHGF with nanomolar affinity. The purpose of this study was to investigate the usefulness of HiP-8-based PET probes in human HGF knock-in humanized mice. 64Cu-labeled HiP-8 molecules were synthesized using a cross-bridged cyclam chelator, CB-TE1K1P. Radio-high-performance liquid chromatography-based metabolic stability analyses showed that more than 90% of the probes existed in intact form in blood at least for 15 min. In PET studies, significantly selective visualization of hHGF-overexpressing tumors versus hHGF-negative tumors was observed in double-tumor-bearing mice. The accumulation of labeled HiP-8 into the hHGF-overexpressing tumors was significantly reduced by competitive inhibition. In addition, the radioactivity and distribution of phosphorylated MET/HGF receptor were colocalized in tissues. These results demonstrate that the 64Cu-labeled HiP-8 probes are suitable for tcHGF imaging in vivo, and secretory proteins like tcHGF can be a target for PET imaging.


Asunto(s)
Factor de Crecimiento de Hepatocito , Neoplasias , Ratones , Humanos , Animales , Factor de Crecimiento de Hepatocito/metabolismo , Péptidos/química , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Quelantes/química , Radioisótopos de Cobre/química , Línea Celular Tumoral
3.
Nat Chem Biol ; 15(6): 598-606, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31101918

RESUMEN

Activation of hepatocyte growth factor (HGF) by proteolytic processing is triggered in cancer microenvironments, and subsequent signaling through the MET receptor is involved in cancer progression. However, the structure of HGF remains elusive, and few small/medium-sized molecules can modulate HGF. Here, we identified HiP-8, a macrocyclic peptide consisting of 12 amino acids, which selectively recognizes active HGF. Biochemical analysis and real-time single-molecule imaging by high-speed atomic force microscopy demonstrated that HiP-8 restricted the dynamic domains of HGF into static closed conformations, resulting in allosteric inhibition. Positron emission tomography using HiP-8 as a radiotracer enabled noninvasive visualization and simultaneous inhibition of HGF-MET activation status in tumors in a mouse model. Our results illustrate the conformational change in proteolytic activation of HGF and its detection and inhibition by a macrocyclic peptide, which may be useful for diagnosis and treatment of cancers.


Asunto(s)
Factor de Crecimiento de Hepatocito/análisis , Compuestos Macrocíclicos/química , Neoplasias Experimentales/diagnóstico por imagen , Imagen Óptica , Péptidos/química , Animales , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/metabolismo , Compuestos Macrocíclicos/farmacología , Ratones , Neoplasias Experimentales/tratamiento farmacológico , Péptidos/farmacología , Tomografía de Emisión de Positrones
4.
Mol Pharm ; 16(3): 1065-1073, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30633529

RESUMEN

Immuno-positron emission tomography (immuno-PET) is expected to improve the specificity of small chemical tracers such as 18F-fluorodeoxyglucose. Whole antibodies significantly accumulate in target molecule-expressing tumors but frequently persist too long in the blood circulation for imaging purposes. We investigated the utility of whole antibodies, 64Cu-labeled via a urokinase-substrate linker, and their exogenous urokinase-responsive cleavage to enhance clearance of immuno-PET probes from the blood and shorten the time required to develop adequate imaging contrast. Specifically, we used 64Cu-labeled trastuzumab in human epidermal growth factor receptor 2 (HER2)-positive tumor-bearing mice. 64Cu-labeled trastuzumab with a urokinase-cleavage site (64Cu-CB-TE1A1P-USL-trastuzumab) was synthesized using a bifunctional chelator incorporating an urokinase substrate peptide. Urokinase cleavage was analyzed in vitro by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and radio-gel permeation-high-performance liquid chromatography. Improvements in radioisotope clearance and HER2-imaging by urokinase injection were evaluated by PET imaging and ex vivo biodistribution studies in A431 tumor-bearing mice. 64Cu-CB-TE1A1P-USL-trastuzumab was cleaved into smaller radioactive fragments by 20 000 IU/mL urokinase treatment in vitro at an efficacy of ∼95%. The probe targeted HER2 in A431 tumors in mice within 24 h post-injection, and approximately two-thirds of the probe in the blood circulation was eliminated via renal clearance of radioactive fragments after three urokinase injections. Therefore, the tumor/blood ratio increased 3.0-fold. Without urokinase injection, the tumor accumulation of 64Cu-CB-TE1A1P-USL-trastuzumab slowly increased, and the blood radioactivity decreased over 72 h. However, the tumor/blood ratios in mice after three urokinase injections were higher at 24 h than those in mice without injections at 72 h. The results indicate that our approach shortened the time required to develop adequate imaging contrast of immuno-PET by >2 days. Therefore, this approach can benefit high-sensitivity imaging under lower radioactive decay conditions and can decrease patient radiation exposure. In addition, it could reduce other adverse effects of radioimmunotherapy.


Asunto(s)
Radioisótopos de Cobre/química , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/farmacología , Animales , Línea Celular Tumoral , Quelantes/química , Fluorodesoxiglucosa F18 , Compuestos Heterocíclicos con 2 Anillos/química , Xenoinjertos , Humanos , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/patología , Organofosfonatos/química , Distribución Tisular , Trastuzumab/química , Activador de Plasminógeno de Tipo Uroquinasa/administración & dosificación
5.
Eur J Pharm Sci ; 180: 106339, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414157

RESUMEN

Microcin J25 (MccJ25), a lasso peptide, has a unique 3-D interlocked structure that provides high stability under acidic conditions, at high temperatures, and in the presence of proteases. In this study, we generated a positron emission tomography (PET) probe based on MccJ25 analog with an RGD motif and investigated their pharmacokinetics and utility for integrin αvß3 imaging in tumors. The MccJ25 variant with an RGD motif in the loop region and a lysine substitution at the C-terminus (MccJ25(RGDF)GtoK) was produced in E. coli transfected with plasmid DNA containing the MccJ25 biosynthetic gene cluster (mcjABCD). [64Cu]Cu-MccJ25(RGDF)GtoK was synthesized using the C-terminal lysine labeled with copper-64 (t1/2 = 12.7 h) via a bifunctional chelator; it showed stability in 90% mouse plasma for 45 min. Using PET imaging for integrin αvß3 positive U87MG tumor bearing mice, [64Cu]Cu-MccJ25(RGDF)GtoK could clearly distinguish the tumor, and its accumulation was significantly higher than that of MccJ25(GIGT)GtoK without the binding motif for integrin αvß3. Furthermore, MccJ25(RGDF)GtoK enabled visualization of only U87MG tumors but not MCF-7 tumors with low integrin αvß3 expression in double tumor-bearing mice. In ex vivo biodistribution analysis, the integrin αvß3 non-specific accumulation of [64Cu]Cu-MccJ25(RGDF)GtoK was significantly lower in various tissues, except for the kidneys, as compared to the control probe ([64Cu]Cu-cyclic RGD peptide). These results of the present study indicate that 64Cu-labeling methods are appropriate for the synthesis of MccJ25-based PET probes, and [64Cu]Cu-MccJ25 variants are useful tools for cancer molecular imaging.


Asunto(s)
Integrina alfaVbeta3 , Sondas Moleculares , Neoplasias , Tomografía de Emisión de Positrones , Animales , Ratones , Escherichia coli , Integrina alfaVbeta3/metabolismo , Lisina/genética , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
6.
Int J Pharm ; 624: 121968, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35772573

RESUMEN

We developed a method of labeling the surfaces of small extracellular vesicles (sEVs) with 64Cu using a cross-bridged, macrocyclic chelator (CB-TE1A1P) and applied to pharmacokinetics study with positron emission tomography (PET). After incubation in 20% plasma for 10 min, approximately a half of the 64Cu was desorbed from 64Cu-labeled sEVs purified by phosphate-buffered saline wash, suggesting partly weak interaction without coordinating to CB-TE1A1P. After subsequent purification with albumin, 64Cu desorption was greatly reduced, resulting in a radiochemical stability of 95.7%. Notably, labeling did not alter the physicochemical and biological properties of sEVs. After intravenous injection, 64Cu-labeled sEVs rapidly disappeared from the systemic blood circulation and accumulated mainly in the liver and spleen of macrophage-competent mice. In macrophage-depleted mice, 64Cu-labeled sEVs remained in the blood circulation for a longer period and gradually accumulated in the liver and spleen, suggesting mechanisms of hepatic and splenic accumulation other than macrophage-dependent phagocytosis. The comparison of tissue uptake clearance between macrophage-competent and macrophage-depleted mice suggests that macrophages contributed to 67% and 76% of sEV uptake in the liver and spleen, respectively. The application of this method in pharmacokinetics PET studies can be useful in preclinical and clinical research and the development of sEV treatment modalities.


Asunto(s)
Quelantes , Vesículas Extracelulares , Animales , Quelantes/farmacocinética , Radioisótopos de Cobre/química , Ratones , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química
7.
Biol Pharm Bull ; 34(8): 1348-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21804231

RESUMEN

In a previous report, we described the development of lipid envelope-type nanoparticles (MEND) modified with octaarginine (R8) and a pH-sensitive fusogenic peptide (GALA) for delivering short interference RNA (siRNA) to mouse dendritic cells (DCs). A20 was recently reported to be a negative regulator of the toll-like receptor and the tumor necrosis factor receptor signaling pathways. Although A20 would be expected to be a useful target for boosting the effects of adjuvants in DC immunotherapy, limited information is available regarding the use of A20-silenced DC by an original non-viral vector. In this study, we loaded anti-A20 siRNA into a MEND and investigated the gene knockdown activity in DC and the immunological functions of A20-silenced DC. The use of a MEND resulted in a significant A20 knockdown effect, and the A20-silenced DC resulted in an enhanced production of proinflammatory molecules, after lipopolysaccharide (LPS) stimulation. The expression of co-stimulatory molecules by LPS stimulation was also increased in the A20-silenced DC. The findings reported herein show that a MEND loaded with anti-A20 siRNA is a potent non-viral vector that has the ability to enhance the adjuvant effect of LPS in DC.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lípidos/inmunología , Lipopolisacáridos/inmunología , Interferencia de ARN/inmunología , ARN Interferente Pequeño/administración & dosificación , Adyuvantes Inmunológicos , Animales , Células Dendríticas/inmunología , Portadores de Fármacos , Femenino , Técnicas de Silenciamiento del Gen/métodos , Ratones , Ratones Endogámicos C57BL , Nanopartículas
8.
J Control Release ; 294: 185-194, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30529725

RESUMEN

In vivo biodistribution analyses, especially in tumors, of nucleic acids delivered with nanoparticles are important to develop drug delivery technologies for medical use. We previously developed wrapsome® (WS), an ~100 nm liposomal nanoparticle that can encapsulate siRNA, and reported that WS accumulates in tumors in vivo and inhibits their growth by an enhanced permeability and retention effect. In the present study, we evaluated the pharmacokinetics of nucleic acid-containing nanoparticles by combining dynamic positron emission tomography (PET) imaging and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. An 18-mer phosphorothioate oligodeoxynucleotide (ODN), trabedersen, was used as a model drug and was encapsulated in WS. Dynamic PET imaging and time-activity curve analysis of WS-encapsulated 64Cu-labeled ODNs administered to mice with MIA PaCa-2 subcutaneous xenograft tumors showed tumor accumulation (~3% injected dose per gram (%ID/g)) and liver accumulation (~30 %ID/g) at 24 h. Under these conditions, LC/MS/MS analysis showed that the level of intact ODNs was 1.62 %ID/g in the tumor and 1.70 %ID/g in the liver. From these pharmacokinetic data, the intact/accumulated ODN ratios were calculated using the following equation: intact/accumulated ODN ratio (%) = %ID/g LC/MS/MS, tissue, mean/%ID/g PET, tissue, mean × 100. Interestingly, the ratios for the tumor and kidney were maintained at 20-50% over 48 h after administration of the WS-encapsulated form. In contrast, the ratio for the liver rapidly decreased at 24 h, showing the same pattern as that for naked ODN. These different patterns indicate that WS effectively protected the ODN in the tumor and kidney, but protected it less efficiently in the liver. A combined approach of dynamic PET imaging and LC/MS/MS analysis will assist the development of nanoparticle-encapsulated nucleic acid drugs, such as those using WSs, to determine their detailed pharmacokinetics.


Asunto(s)
Nanopartículas/administración & dosificación , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Oligonucleótidos/administración & dosificación , Animales , Línea Celular Tumoral , Cromatografía Liquida , Femenino , Humanos , Liposomas , Ratones , Oligonucleótidos/farmacocinética , Tomografía de Emisión de Positrones , Espectrometría de Masas en Tándem , Distribución Tisular
9.
Sci Rep ; 6: 37849, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892533

RESUMEN

Gene silencing by small interfering RNA (siRNA) is useful for analyzing the functions of human immune cells. However, the transfection of siRNA to human immune cells is difficult. Here, we used a multifunctional envelope-type nanodevice (MEND) containing YSK12-C4 (YSK12-MEND) to efficiently introduce siRNA to human immune cell lines, Jurkat, THP-1, KG-1 and NK92. The YSK12-MEND was transfected to human immune cell lines at a siRNA dose range of 1-30 nM, resulting that maximum gene silencing efficiencies at the mRNA level in Jurkat, THP-1, KG-1 and NK92 were 96%, 96%, 91% and 75%, respectively. The corresponding values for Lipofectamine RNAiMAX (RNAiMAX) were 37%, 56%, 43% and 19%, respectively. The process associated with cellular uptake played a role in effective gene silencing effect of the YSK12-MEND. The small size and high non-aggregability of the YSK12-MEND were advantageous for the cellular internalization of siRNA to immune cell lines. In the case of RNAiMAX, a drastic increase in particles size was observed in the medium used, which inhibited cellular uptake. The YSK12-MEND reported in herein appears to be appropriate for delivering siRNA to human immune cells, and the small particle size and non-aggregability are essential properties.


Asunto(s)
Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Transducción Genética/métodos , Línea Celular , Silenciador del Gen , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Células Jurkat , Células Asesinas Naturales , Nanopartículas/toxicidad , Tamaño de la Partícula
10.
J Control Release ; 225: 183-91, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26820519

RESUMEN

Applying small interfering RNA (siRNA) to dendritic cell (DC) based therapy represents a potential candidate for cancer immunotherapy. However, delivering siRNA to DCs is a challenging issue for non-viral vectors. To date, only viral vectors have achieved efficient gene silencing in DCs. We report herein that a novel cationic lipid, YSK12-C4, when loaded in a nanoparticle with siRNA (YSK12-C4 multifunctional envelope type nano device [YSK12-MEND]), greatly facilitated gene silencing in mouse DCs. The use of the YSK12-MEND resulted in a gene silencing efficiency in excess of 90%, with a median effective dose (ED50) of 1.5nM, whereas the maximum gene silencing efficiency of Lipofectamine RNAiMAX was less than 60% and the ED50 was 25nM. Furthermore, suppressor of cytokine signaling 1, an immune suppressive molecule in DCs, silenced in the mouse DC by the YSK12-MEND showed a drastic enhancement in cytokine production, resulting in the significant suppression of tumor growth when it was applied to DC-based therapy against a mouse lymphoma. These results clearly indicate that YSK12-MEND overcomes the obstacle associated with non-viral vectors and can be considered to be a promising non-viral vector for siRNA delivery to DCs, thus accelerating DC-based therapies with siRNA.


Asunto(s)
Células Dendríticas/inmunología , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Línea Celular Tumoral , Células Dendríticas/metabolismo , Femenino , Vectores Genéticos , Hemólisis , Inmunoterapia , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Neoplasias/patología , Neoplasias/terapia , ARN Interferente Pequeño/química , Receptores Depuradores de Clase B/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Carga Tumoral
11.
Biomater Sci ; 4(3): 439-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26667208

RESUMEN

Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.


Asunto(s)
Núcleo Celular/química , ADN/química , Endosomas/química , Membranas Intracelulares/química , Lípidos/química , Liposomas/química , Nanopartículas/química , ADN/metabolismo , Endosomas/metabolismo , Liposomas/metabolismo , Fusión de Membrana
12.
Int J Pharm ; 494(1): 271-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26253379

RESUMEN

The delivery of small interfering RNA (siRNA) to dendritic cells (DCs) is a challenging issue for siRNA-loaded lipid nanoparticles. The cause of this difficulty is unknown. The findings reported herein indicate that the rate-limiting step in gene silencing using siRNA-loaded lipid nanoparticles in DCs, as evidenced by a quantitative analysis of each process in siRNA delivery between mouse bone marrow derived DC (BMDC) and other cell lines, was not associated with the actual delivery of siRNA. A gene silencing of only 50% was observed in BMDC, even when a high dose was used. Contrary to our expectation, the interval between cellular uptake and the delivery of siRNA to the cytosol was not responsible for the low gene silencing. Meanwhile, a drastic difference was found in the relationship between the efficiency of gene silencing and the amount of intracellular intact siRNA. This fact indicates that the processes after cytosolic delivery of siRNA, namely the intracellular pharmacodynamics (PD) of siRNA, appear to be the rate-limiting step in gene silencing in BMDC. The findings reported here demonstrate the importance of the intracellular PD of siRNA delivered to cytosol in the development of siRNA delivery systems for gene silencing in DCs.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Silenciador del Gen/efectos de los fármacos , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/farmacocinética , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Lípidos/farmacocinética , Ratones , ARN Interferente Pequeño/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA