Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 29(3): 1312-1323, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212299

RESUMEN

Current treatments for antibody-mediated autoimmunity are associated with lack of specificity, leading to immunosuppressive effects. To overcome this limitation, we have developed a class of antibody-based therapeutics for the treatment of autoimmunity involving antibodies that recognize the autoantigen, myelin oligodendrocyte glycoprotein (MOG). These agents ("Seldegs," for selective degradation) selectively eliminate antigen (MOG)-specific antibodies without affecting the levels of antibodies of other specificities. Seldeg treatment of mice during antibody-mediated exacerbation of experimental autoimmune encephalomyelitis by patient-derived MOG-specific antibodies results in disease amelioration. Consistent with their therapeutic effects, Seldegs deliver their targeted antibodies to Kupffer and liver sinusoidal endothelial cells that are known to have tolerogenic effects. Our results show that Seldegs can ameliorate disease mediated by MOG-specific antibodies and indicate that this approach also has the potential to treat other autoimmune diseases where the specific clearance of antibodies is required.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de IgG/metabolismo
2.
Opt Express ; 29(1): 182-207, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362108

RESUMEN

Single-molecule microscopy allows for the investigation of the dynamics of individual molecules and the visualization of subcellular structures at high spatial resolution. For single-molecule imaging experiments, and particularly those that entail the acquisition of multicolor data, calibration of the microscope and its optical components therefore needs to be carried out at a high level of accuracy. We propose here a method for calibrating a microscope at the nanometer scale, in the sense of determining optical aberrations as revealed by point source localization errors on the order of nanometers. The method is based on the imaging of a standard sample to detect and evaluate the amount of geometric aberration introduced in the optical light path. To provide support for multicolor imaging, it also includes procedures for evaluating the geometric aberration caused by a dichroic filter and the axial chromatic aberration introduced by an objective lens.

3.
Traffic ; 19(4): 273-284, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437282

RESUMEN

Despite the rapidly expanding use of antibody-based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody-opsonized tumor cells is limited. Here we report the formation of a phagosome-associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2-positive cancer cells in the presence of the HER2-specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome-associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody-opsonized cancer cells by macrophages.


Asunto(s)
Macrófagos/metabolismo , Fagocitosis/inmunología , Fagosomas/metabolismo , Vacuolas/metabolismo , Animales , Anticuerpos/inmunología , Humanos , Lisosomas/metabolismo , Fusión de Membrana/fisiología , Ratones , Neoplasias/inmunología , Neoplasias/metabolismo , Fagocitosis/fisiología , Receptores de IgG/metabolismo
4.
Am J Hematol ; 95(2): 178-187, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821591

RESUMEN

Primary immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder, characterized by a low platelet count (<100 × 109 /L) in the absence of other causes associated with thrombocytopenia. In most patients, IgG autoantibodies directed against platelet receptors can be detected. They accelerate platelet clearance and destruction, inhibit platelet production, and impair platelet function, resulting in increased risk of bleeding and impaired quality of life. Efgartigimod is a human IgG1 antibody Fc-fragment, a natural ligand of the neonatal Fc receptor (FcRn), engineered for increased affinity to FcRn, while preserving its characteristic pH-dependent binding. Efgartigimod blocks FcRn, preventing IgG recycling, and causing targeted IgG degradation. In this Phase 2 study, 38 patients were randomized 1:1:1 to receive four weekly intravenous infusions of either placebo (N = 12) or efgartigimod at a dose of 5 mg/kg (N = 13) or 10 mg/kg (N = 13). This short treatment cycle of efgartigimod in patients with ITP, predominantly refractory to previous lines of therapy, was shown to be well tolerated, and demonstrated a favorable safety profile consistent with Phase 1 data. Efgartigimod induced a rapid reduction of total IgG levels (up to 63.7% mean change from baseline), which was associated with clinically relevant increases in platelet counts (46% patients on efgartigimod vs 25% on placebo achieved a platelet count of ≥50 × 109 /L on at least two occasions, and 38% vs 0% achieved ≥50 × 109 /L for at least 10 cumulative days), and a reduced proportion of patients with bleeding. Taken together, these data warrant further evaluation of FcRn antagonism as a novel therapeutic approach in ITP.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Inmunoglobulina G/uso terapéutico , Púrpura Trombocitopénica Idiopática , Receptores Fc/antagonistas & inhibidores , Adulto , Anciano , Método Doble Ciego , Femenino , Estudios de Seguimiento , Antígenos de Histocompatibilidad Clase I/sangre , Humanos , Masculino , Persona de Mediana Edad , Recuento de Plaquetas , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Receptores Fc/sangre
5.
Bioorg Med Chem ; 28(24): 115808, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33071032

RESUMEN

As a versatile reaction for bioconjugation, Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has enormous potential in the synthesis of antibody-drug conjugates (ADCs). In order to optimize CuAAC-based ADC synthesis, we characterized kinetically different formulation processes by mimicking ADC synthesis using small molecules and subsequently revealed unique kinetic behaviors of different combinations of alkyne and azide conditions. Our results indicate that under ADC synthesis conditions, for an alkyne-containing drug, its concentration has minimal impact on the reaction rate when an antibody has a non-metal-chelating azide but is proportional to concentration when an antibody contains a metal-chelating azide; however, for an alkyne-containing antibody, the ADC synthesis rate is proportional to the concentration of a drug with a non-metal-chelating azide but displays almost no dependence on drug concentration with a metal-chelating azide. Based on our results, we designed and tested an optimal "click" formulation strategy that allowed rapid and cost-effective synthesis of a new ADC.


Asunto(s)
Química Clic , Inmunoconjugados/química , Alquinos/química , Anticuerpos Monoclonales Humanizados/química , Azidas/química , Catálisis , Cobre/química , Reacción de Cicloadición , Preparaciones Farmacéuticas/química
6.
J Autoimmun ; 86: 104-115, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28964723

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG) is exposed on the outer surface of the myelin sheath, and as such, represents a possible target antigen for antibodies in multiple sclerosis (MS) and other demyelinating diseases. However, despite extensive analyses, whether MOG-specific antibodies contribute to pathogenesis in human MS remains an area of uncertainty. In the current study we demonstrate that antibodies derived from adult MS patients exacerbate experimental autoimmune encephalomyelitis (EAE) in 'humanized' mice that transgenically express human FcγRs (hFcγRs). Importantly, this exacerbation is dependent on MOG recognition by the human-derived antibodies. The use of mice that express hFcγRs has allowed us to also investigate the contribution of these receptors to disease in the absence of confounding effects of cross-species differences. Specifically, by engineering the Fc region of MOG-specific antibodies to modulate FcγR and complement (C1q) binding, we reveal that FcγRs but not complement activation contribute to EAE pathogenesis. Importantly, selective enhancement of the affinities of these antibodies for specific FcγRs reveals that FcγRIIA is more important than FcγRIIIA in mediating disease exacerbation. These studies not only provide definitive evidence for the contribution of MOG-specific antibodies to MS, but also reveal mechanistic insight that could lead to new therapeutic targets.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Autoanticuerpos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones SCID , Ratones Transgénicos , Vaina de Mielina/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo
7.
Nature ; 485(7400): 656-60, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22660330

RESUMEN

How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered 'orphan ligands' because no receptors were identified. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Leucemia/metabolismo , Leucemia/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Diferenciación Celular , División Celular , Células Cultivadas , Modelos Animales de Enfermedad , Sangre Fetal/citología , Sangre Fetal/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Ratones , Proteína de la Leucemia Mieloide-Linfoide , Receptores Inmunológicos/genética
8.
Opt Express ; 25(4): 3394-3410, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241554

RESUMEN

Multifocal plane microscopy (MUM) can be used to visualize biological samples in three dimensions over large axial depths and provides for the high axial localization accuracy that is needed in applications such as the three-dimensional tracking of single particles and super-resolution microscopy. This report analyzes the performance of intensity-based axial localization approaches as applied to MUM data using Fisher information calculations. In addition, a new non-parametric intensity-based axial location estimation method, Multi-Intensity Lookup Algorithm (MILA), is introduced that, unlike typical intensity-based methods that make use of a single intensity value per data image, utilizes multiple intensity values per data image in determining the axial location of a point source. MILA is shown to be robust against potential bias induced by differences in the sub-pixel location of the imaged point source. The method's effectiveness on experimental data is also evaluated.

9.
Nat Methods ; 10(4): 335-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23455923

RESUMEN

Super-localization microscopy encompasses techniques that depend on the accurate localization of individual molecules from generally low-light images. The obtainable localization accuracies, however, are ultimately limited by the image detector's pixelation and noise. We present the ultrahigh accuracy imaging modality (UAIM), which allows users to obtain accuracies approaching the accuracy that is achievable only in the absence of detector pixelation and noise, and which we found can experimentally provide a >200% accuracy improvement over conventional low-light imaging.


Asunto(s)
Microscopía/métodos , Transporte de Proteínas/fisiología , Diseño de Equipo , Fluorescencia , Funciones de Verosimilitud , Fotones , Procesamiento de Señales Asistido por Computador/instrumentación , Procesos Estocásticos
10.
J Autoimmun ; 72: 84-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236506

RESUMEN

Antigen-specific T cell tolerance holds great promise for the treatment of autoimmune diseases. However, strategies to induce durable tolerance using high doses of soluble antigen have to date been unsuccessful, due to lack of efficacy and the risk of hypersensitivity. In the current study we have overcome these limitations by developing a platform for tolerance induction based on engineering the immunoglobulin Fc region to modulate the dynamic properties of low doses (1 µg/mouse; ∼50 µg/kg) of Fc-antigen fusions. Using this approach, we demonstrate that antigen persistence is a dominant factor governing the elicitation of tolerance in the model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), induced by immunizing B10.PL mice with the N-terminal epitope of myelin basic protein. Unexpectedly, our analyses reveal a stringent threshold of antigen persistence for both prophylactic and therapeutic treatments, although distinct mechanisms lead to tolerance in these two settings. Importantly, the delivery of tolerogenic Fc-antigen fusions during ongoing disease results in the downregulation of T-bet and CD40L combined with amplification of Foxp3(+) T cell numbers. The generation of effective, low dose tolerogens using Fc engineering has potential for the regulation of autoreactive T cells.


Asunto(s)
Antígenos/inmunología , Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/inmunología , Tolerancia Inmunológica/inmunología , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Epítopos/inmunología , Femenino , Citometría de Flujo , Humanos , Inmunización , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones Transgénicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/prevención & control , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
11.
Int J Cancer ; 137(2): 267-77, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25471734

RESUMEN

Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer.


Asunto(s)
Anticuerpos/farmacología , Neurregulina-1/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Anticuerpos/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Immunoblotting , Indazoles/farmacología , Masculino , Microscopía Fluorescente , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor ErbB-2/inmunología , Receptor ErbB-3/inmunología , Sulfonamidas/farmacología , Factores de Tiempo , Trastuzumab
12.
J Cell Sci ; 126(Pt 5): 1176-88, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23345403

RESUMEN

A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel 'looping' process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway.


Asunto(s)
Microscopía/métodos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Endosomas/metabolismo , Humanos , Nexinas de Clasificación/metabolismo , Proteínas de Unión al GTP rab/metabolismo
13.
Opt Express ; 23(6): 7630-52, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25837101

RESUMEN

Fluorescence microscopy is a photon-limited imaging modality that allows the study of subcellular objects and processes with high specificity. The best possible accuracy (standard deviation) with which an object of interest can be localized when imaged using a fluorescence microscope is typically calculated using the Cramér-Rao lower bound, that is, the inverse of the Fisher information. However, the current approach for the calculation of the best possible localization accuracy relies on an analytical expression for the image of the object. This can pose practical challenges since it is often difficult to find appropriate analytical models for the images of general objects. In this study, we instead develop an approach that directly uses an experimentally collected image set to calculate the best possible localization accuracy for a general subcellular object. In this approach, we fit splines, i.e. smoothly connected piecewise polynomials, to the experimentally collected image set to provide a continuous model of the object, which can then be used for the calculation of the best possible localization accuracy. Due to its practical importance, we investigate in detail the application of the proposed approach in single molecule fluorescence microscopy. In this case, the object of interest is a point source and, therefore, the acquired image set pertains to an experimental point spread function.


Asunto(s)
Imagenología Tridimensional , Microscopía Fluorescente/métodos , Algoritmos , Línea Celular Tumoral , Humanos , Lisosomas/metabolismo , Reproducibilidad de los Resultados , Procesos Estocásticos
14.
Opt Express ; 23(13): 16866-83, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191698

RESUMEN

The computation of point spread functions, which are typically used to model the image profile of a single molecule, represents a central task in the analysis of single molecule microscopy data. To determine how the accuracy of the computation affects how well a single molecule can be localized, we investigate how the fineness with which the point spread function is integrated over an image pixel impacts the performance of the maximum likelihood location estimator. We consider both the Airy and the two-dimensional Gaussian point spread functions. Our results show that the point spread function needs to be adequately integrated over a pixel to ensure that the estimator closely recovers the true location of the single molecule with an accuracy that is comparable to the best possible accuracy as determined using the Fisher information formalism. Importantly, if integration with an insufficiently fine step size is carried out, the resulting estimates can be significantly different from the true location, particularly when the image data is acquired at relatively low magnifications. We also present a methodology for determining an adequate step size for integrating the point spread function.


Asunto(s)
Fenómenos Ópticos , Simulación por Computador , Imagenología Tridimensional , Funciones de Verosimilitud , Distribución Normal
15.
J Immunol ; 191(3): 1091-101, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23817425

RESUMEN

Although Abs specific for myelin oligodendrocyte glycoprotein (MOG) have been detected in patients with multiple sclerosis (MS), their contribution to pathogenesis remains poorly understood. Immunization of C57BL/6 mice with recombinant human MOG (hMOG) results in experimental autoimmune encephalomyelitis involving MOG-specific, demyelinating Abs. This model is therefore informative for understanding anti-MOG humoral responses in MS. In the current study, we have characterized the hMOG-specific Ab repertoire in immunized C57BL/6 mice using both in vitro and in vivo approaches. We demonstrate that hMOG-specific mAbs are not focused on one specific region of MOG, but instead target multiple epitopes. Encephalitogenicity of the mAbs, assessed by the ability of the mAbs to exacerbate experimental autoimmune encephalomyelitis in mice, correlates with the activity of the mAbs in binding to CNS tissue sections, but not with other in vitro assays. The targeting of different MOG epitopes by encephalitogenic Abs has implications for disease pathogenesis, because it could result in MOG cross linking on oligodendrocytes and/or immune complex formation. These studies reveal several novel features concerning pathogenic, humoral responses that may have relevance to human MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Epítopos/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Femenino , Humanos , Inmunización , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Oligodendroglía/inmunología , Resonancia por Plasmón de Superficie
16.
IEEE Signal Process Mag ; 32(1): 58-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26167102

RESUMEN

Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms.

17.
Opt Express ; 22(14): 16706-21, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090489

RESUMEN

Multifocal plane microscopy (MUM) has made it possible to study subcellular dynamics in 3D at high temporal and spatial resolution by simultaneously imaging distinct planes within the specimen. MUM allows high accuracy localization of a point source along the z-axis since it overcomes the depth discrimination problem of conventional single plane microscopy. An important question in MUM experiments is how the number of focal planes and their spacings should be chosen to achieve the best possible localization accuracy along the z-axis. Here, we propose approaches based on the Fisher information matrix and report spacing scenarios called strong coupling and weak coupling which yield an appropriate 3D localization accuracy. We examine the effect of numerical aperture, magnification, photon count, emission wavelength and extraneous noise on the spacing scenarios. In addition, we investigate the effect of changing the number of focal planes on the 3D localization accuracy. We also introduce a new software package that provides a user-friendly framework to find appropriate plane spacings for a MUM setup. These developments should assist in optimizing MUM experiments.


Asunto(s)
Microscopía/métodos , Fenómenos Ópticos , Algoritmos , Simulación por Computador , Imagenología Tridimensional , Fotones
18.
JCI Insight ; 9(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713534

RESUMEN

The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Receptores Fc , Receptores Fc/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Animales , Transporte de Proteínas/efectos de los fármacos , Albúmina Sérica/metabolismo , Ratones , Unión Proteica
19.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557487

RESUMEN

Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.


Asunto(s)
Trasplante de Médula Ósea , Infecciones por Citomegalovirus , Inmunidad Humoral , Interleucina-6 , Antivirales , Trasplante de Médula Ósea/efectos adversos , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Inmunoglobulina G , Interleucina-6/metabolismo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA