Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200635

RESUMEN

An annotated photoplethysmogram (PPG) is required when evaluating PPG algorithms that have been developed to detect the onset and systolic peaks of PPG waveforms. However, few publicly accessible PPG datasets exist in which the onset and systolic peaks of the waveforms are annotated. Therefore, this study developed a MATLAB toolbox that stitches predetermined annotated PPGs in a random manner to generate a long, annotated PPG signal. With this toolbox, any combination of four annotated PPG templates that represent regular, irregular, fast rhythm, and noisy PPG waveforms can be stitched together to generate a long, annotated PPG. Furthermore, this toolbox can simulate real-life PPG signals by introducing different noise levels and PPG waveforms. The toolbox can implement two stitching methods: one based on the systolic peak and the other on the onset. Additionally, cubic spline interpolation is used to smooth the waveform around the stitching point, and a skewness index is used as a signal quality index to select the final signal output based on the stitching method used. The developed toolbox is free and open-source software, and a graphical user interface is provided. The method of synthesizing by stitching introduced in this paper is a data augmentation strategy that can help researchers significantly increase the size and diversity of annotated PPG signals available for training and testing different feature extraction algorithms.


Asunto(s)
Algoritmos , Fotopletismografía , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador , Programas Informáticos
2.
BMC Med Imaging ; 16: 11, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26800667

RESUMEN

BACKGROUND: From the viewpoint of the patients' health, reducing the radiation dose in computed tomography (CT) is highly desirable. However, projection measurements acquired under low-dose conditions will contain much noise. Therefore, reconstruction of high-quality images from low-dose scans requires effective denoising of the projection measurements. METHODS: We propose a denoising algorithm that is based on maximizing the data likelihood and sparsity in the gradient domain. For Poisson noise, this formulation automatically leads to a locally adaptive denoising scheme. Because the resulting optimization problem is hard to solve and may also lead to artifacts, we suggest an explicitly local denoising method by adapting an existing algorithm for normally-distributed noise. We apply the proposed method on sets of simulated and real cone-beam projections and compare its performance with two other algorithms. RESULTS: The proposed algorithm effectively suppresses the noise in simulated and real CT projections. Denoising of the projections with the proposed algorithm leads to a substantial improvement of the reconstructed image in terms of noise level, spatial resolution, and visual quality. CONCLUSION: The proposed algorithm can suppress very strong quantum noise in CT projections. Therefore, it can be used as an effective tool in low-dose CT.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Humanos , Distribución de Poisson , Dosis de Radiación , Relación Señal-Ruido
3.
Sensors (Basel) ; 16(2): 201, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26861335

RESUMEN

This paper proposes a compressive sensing (CS) method for multi-channel electroencephalogram (EEG) signals in Wireless Body Area Network (WBAN) applications, where the battery life of sensors is limited. For the single EEG channel case, known as the single measurement vector (SMV) problem, the Block Sparse Bayesian Learning-BO (BSBL-BO) method has been shown to yield good results. This method exploits the block sparsity and the intra-correlation (i.e., the linear dependency) within the measurement vector of a single channel. For the multichannel case, known as the multi-measurement vector (MMV) problem, the Spatio-Temporal Sparse Bayesian Learning (STSBL-EM) method has been proposed. This method learns the joint correlation structure in the multichannel signals by whitening the model in the temporal and the spatial domains. Our proposed method represents the multi-channels signal data as a vector that is constructed in a specific way, so that it has a better block sparsity structure than the conventional representation obtained by stacking the measurement vectors of the different channels. To reconstruct the multichannel EEG signals, we modify the parameters of the BSBL-BO algorithm, so that it can exploit not only the linear but also the non-linear dependency structures in a vector. The modified BSBL-BO is then applied on the vector with the better sparsity structure. The proposed method is shown to significantly outperform existing SMV and also MMV methods. It also shows significant lower compression errors even at high compression ratios such as 10:1 on three different datasets.

4.
Biomed Eng Online ; 14: 96, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26499452

RESUMEN

BACKGROUND: Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. METHODS: We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. RESULTS: The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 µm below the epithelial surface were respectively 100, 100, and 92 %. CONCLUSIONS: Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Displasia del Cuello del Útero/diagnóstico , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Colposcopía , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Fenotipo , Neoplasias del Cuello Uterino/patología , Adulto Joven , Displasia del Cuello del Útero/patología
5.
Sensors (Basel) ; 14(2): 2036-51, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24469356

RESUMEN

The emergence of wireless sensor networks (WSNs) has motivated a paradigm shift in patient monitoring and disease control. Epilepsy management is one of the areas that could especially benefit from the use of WSN. By using miniaturized wireless electroencephalogram (EEG) sensors, it is possible to perform ambulatory EEG recording and real-time seizure detection outside clinical settings. One major consideration in using such a wireless EEG-based system is the stringent battery energy constraint at the sensor side. Different solutions to reduce the power consumption at this side are therefore highly desired. The conventional approach incurs a high power consumption, as it transmits the entire EEG signals wirelessly to an external data server (where seizure detection is carried out). This paper examines the use of data reduction techniques for reducing the amount of data that has to be transmitted and, thereby, reducing the required power consumption at the sensor side. Two data reduction approaches are examined: compressive sensing-based EEG compression and low-complexity feature extraction. Their performance is evaluated in terms of seizure detection effectiveness and power consumption. Experimental results show that by performing low-complexity feature extraction at the sensor side and transmitting only the features that are pertinent to seizure detection to the server, a considerable overall saving in power is achieved. The battery life of the system is increased by 14 times, while the same seizure detection rate as the conventional approach (95%) is maintained.


Asunto(s)
Convulsiones/diagnóstico , Atención Ambulatoria , Electroencefalografía , Humanos , Miniaturización , Convulsiones/prevención & control , Tecnología Inalámbrica
6.
Sensors (Basel) ; 14(1): 1474-96, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24434840

RESUMEN

The use of wireless body sensor networks is gaining popularity in monitoring and communicating information about a person's health. In such applications, the amount of data transmitted by the sensor node should be minimized. This is because the energy available in these battery powered sensors is limited. In this paper, we study the wireless transmission of electroencephalogram (EEG) signals. We propose the use of a compressed sensing (CS) framework to efficiently compress these signals at the sensor node. Our framework exploits both the temporal correlation within EEG signals and the spatial correlations amongst the EEG channels. We show that our framework is up to eight times more energy efficient than the typical wavelet compression method in terms of compression and encoding computations and wireless transmission. We also show that for a fixed compression ratio, our method achieves a better reconstruction quality than the CS-based state-of-the art method. We finally demonstrate that our method is robust to measurement noise and to packet loss and that it is applicable to a wide range of EEG signal types.


Asunto(s)
Compresión de Datos/métodos , Electroencefalografía/métodos , Algoritmos , Procesamiento de Señales Asistido por Computador
7.
Sensors (Basel) ; 14(9): 15729-48, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25157551

RESUMEN

We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores/instrumentación , Compresión de Datos/métodos , Suministros de Energía Eléctrica , Electroencefalografía/instrumentación , Monitoreo Ambulatorio/instrumentación , Tecnología Inalámbrica/instrumentación , Electroencefalografía/métodos , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo
8.
Sensors (Basel) ; 14(10): 18370-89, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25275348

RESUMEN

Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For practical reasons, a single EEG channel system must be used in these situations. Unfortunately, there exist few studies for muscular artifact cancellation in single-channel EEG recordings. To address this issue, in this preliminary study, we propose a simple, yet effective, method to achieve the muscular artifact cancellation for the single-channel EEG case. This method is a combination of the ensemble empirical mode decomposition (EEMD) and the joint blind source separation (JBSS) techniques. We also conduct a study that compares and investigates all possible single-channel solutions and demonstrate the performance of these methods using numerical simulations and real-life applications. The proposed method is shown to significantly outperform all other methods. It can successfully remove muscular artifacts without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory healthcare systems.


Asunto(s)
Artefactos , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Músculos/fisiología
9.
Comput Biol Med ; 181: 109030, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173488

RESUMEN

Laryngeal hemiplegia (LH) is a major upper respiratory tract (URT) complication in racehorses. Endoscopy imaging of horse throat is a gold standard for URT assessment. However, current manual assessment faces several challenges, stemming from the poor quality of endoscopy videos and subjectivity of manual grading. To overcome such limitations, we propose an explainable machine learning (ML)-based solution for efficient URT assessment. Specifically, a cascaded YOLOv8 architecture is utilized to segment the key semantic regions and landmarks per frame. Several spatiotemporal features are then extracted from key landmarks points and fed to a decision tree (DT) model to classify LH as Grade 1,2,3 or 4 denoting absence of LH, mild, moderate, and severe LH, respectively. The proposed method, validated through 5-fold cross-validation on 107 videos, showed promising performance in classifying different LH grades with 100%, 91.18%, 94.74% and 100% sensitivity values for Grade 1 to 4, respectively. Further validation on an external dataset of 72 cases confirmed its generalization capability with 90%, 80.95%, 100%, and 100% sensitivity values for Grade 1 to 4, respectively. We introduced several explainability related assessment functions, including: (i) visualization of YOLOv8 output to detect landmark estimation errors which can affect the final classification, (ii) time-series visualization to assess video quality, and (iii) backtracking of the DT output to identify borderline cases. We incorporated domain knowledge (e.g., veterinarian diagnostic procedures) into the proposed ML framework. This provides an assistive tool with clinical-relevance and explainability that can ease and speed up the URT assessment by veterinarians.


Asunto(s)
Aprendizaje Automático , Grabación en Video , Caballos , Animales , Enfermedades de los Caballos/diagnóstico por imagen , Endoscopía/métodos
10.
Sensors (Basel) ; 13(3): 3902-21, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23519348

RESUMEN

This work addresses the problem of recovering multi-echo T1 or T2 weighted images from their partial K-space scans. Recent studies have shown that the best results are obtained when all the multi-echo images are reconstructed by simultaneously exploiting their intra-image spatial redundancy and inter-echo correlation. The aforesaid studies either stack the vectorised images (formed by row or columns concatenation) as columns of a Multiple Measurement Vector (MMV) matrix or concatenate them as a long vector. Owing to the inter-image correlation, the thus formed MMV matrix or the long concatenated vector is row-sparse or group-sparse respectively in a transform domain (wavelets). Consequently the reconstruction problem was formulated as a row-sparse MMV recovery or a group-sparse vector recovery. In this work we show that when the multi-echo images are arranged in the MMV form, the thus formed matrix is low-rank. We show that better reconstruction accuracy can be obtained when the information about rank-deficiency is incorporated into the row/group sparse recovery problem. Mathematically, this leads to a constrained optimization problem where the objective function promotes the signal's groups-sparsity as well as its rank-deficiency; the objective function is minimized subject to data fidelity constraints. The experiments were carried out on ex vivo and in vivo T2 weighted images of a rat's spinal cord. Results show that this method yields considerably superior results than state-of-the-art reconstruction techniques.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Modelos Teóricos , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Humanos , Aumento de la Imagen , Radiografía , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA