Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D107-D114, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992296

RESUMEN

Expression Atlas (www.ebi.ac.uk/gxa) and its newest counterpart the Single Cell Expression Atlas (www.ebi.ac.uk/gxa/sc) are EMBL-EBI's knowledgebases for gene and protein expression and localisation in bulk and at single cell level. These resources aim to allow users to investigate their expression in normal tissue (baseline) or in response to perturbations such as disease or changes to genotype (differential) across multiple species. Users are invited to search for genes or metadata terms across species or biological conditions in a standardised consistent interface. Alongside these data, new features in Single Cell Expression Atlas allow users to query metadata through our new cell type wheel search. At the experiment level data can be explored through two types of dimensionality reduction plots, t-distributed Stochastic Neighbor Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP), overlaid with either clustering or metadata information to assist users' understanding. Data are also visualised as marker gene heatmaps identifying genes that help confer cluster identity. For some data, additional visualisations are available as interactive cell level anatomograms and cell type gene expression heatmaps.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Proteómica , Genotipo , Metadatos , Análisis de la Célula Individual , Internet , Humanos , Animales
2.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100514

RESUMEN

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Asunto(s)
Sorghum , Sorghum/genética , Genética Inversa , Fitomejoramiento , Mutación , Fenotipo , Grano Comestible/genética , Metanosulfonato de Etilo/farmacología , Genoma de Planta/genética
3.
BMC Biol ; 22(1): 13, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273258

RESUMEN

BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Flujo de Trabajo , Fitomejoramiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200899

RESUMEN

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Asunto(s)
Biología Computacional , Células Vegetales , Animales , Humanos , Ratones , Plantas/genética
5.
Nature ; 563(7730): 259-264, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356219

RESUMEN

Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Transcripción Genética , Agricultura/métodos , Agricultura/tendencias , Alelos , Arabidopsis/metabolismo , Retroalimentación Fisiológica , Genotipo , Mutación , Nitratos/metabolismo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Nucleic Acids Res ; 50(D1): D129-D140, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850121

RESUMEN

The EMBL-EBI Expression Atlas is an added value knowledge base that enables researchers to answer the question of where (tissue, organism part, developmental stage, cell type) and under which conditions (disease, treatment, gender, etc) a gene or protein of interest is expressed. Expression Atlas brings together data from >4500 expression studies from >65 different species, across different conditions and tissues. It makes these data freely available in an easy to visualise form, after expert curation to accurately represent the intended experimental design, re-analysed via standardised pipelines that rely on open-source community developed tools. Each study's metadata are annotated using ontologies. The data are re-analyzed with the aim of reproducing the original conclusions of the underlying experiments. Expression Atlas is currently divided into Bulk Expression Atlas and Single Cell Expression Atlas. Expression Atlas contains data from differential studies (microarray and bulk RNA-Seq) and baseline studies (bulk RNA-Seq and proteomics), whereas Single Cell Expression Atlas is currently dedicated to Single Cell RNA-Sequencing (scRNA-Seq) studies. The resource has been in continuous development since 2009 and it is available at https://www.ebi.ac.uk/gxa.


Asunto(s)
Bases de Datos Genéticas , Proteínas/genética , Proteómica , Programas Informáticos , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Proteínas/química , RNA-Seq , Análisis de Secuencia de ARN , Análisis de la Célula Individual
7.
PLoS Genet ; 17(3): e1009389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735256

RESUMEN

The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.


Asunto(s)
Genes de Plantas , Mutación , Oryza/genética , Fitomejoramiento , Selección Genética , Productos Agrícolas/genética , Reparación del ADN , Elementos Transponibles de ADN , Ambiente , Interacción Gen-Ambiente , Genoma de Planta , Hibridación Genética , Mutación INDEL , Semillas/genética
8.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37530518

RESUMEN

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Asunto(s)
Productos Agrícolas , Poliploidía , Secuencia de Bases , Mapeo Cromosómico/métodos , Mutación , Fenotipo , Productos Agrícolas/genética , Genoma de Planta/genética , Edición Génica
9.
Nature ; 546(7659): 524-527, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28605751

RESUMEN

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Imagen Individual de Molécula/métodos , Zea mays/genética , Centrómero/genética , Cromosomas de las Plantas/genética , Mapeo Contig , Productos Agrícolas/genética , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , Genes de Plantas/genética , Anotación de Secuencia Molecular , Óptica y Fotónica , Filogenia , ARN Mensajero/análisis , ARN Mensajero/genética , Estándares de Referencia , Sorghum/genética
10.
Nucleic Acids Res ; 49(D1): D1452-D1463, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33170273

RESUMEN

Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Proteínas de Plantas/genética , Plantas/genética , Productos Agrícolas , Elementos Transponibles de ADN , Duplicación de Gen , Ontología de Genes , Redes Reguladoras de Genes , Internet , Bases del Conocimiento , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/metabolismo , Poliploidía , Mapeo de Interacción de Proteínas , Programas Informáticos , Zea mays/genética , Zea mays/metabolismo
11.
Genome Res ; 29(12): 1962-1973, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31744902

RESUMEN

The shoot apical meristem (SAM) orchestrates the balance between stem cell proliferation and organ initiation essential for postembryonic shoot growth. Meristems show a striking diversity in shape and size. How this morphological diversity relates to variation in plant architecture and the molecular circuitries driving it are unclear. By generating a high-resolution gene expression atlas of the vegetative maize shoot apex, we show here that distinct sets of genes govern the regulation and identity of stem cells in maize versus Arabidopsis. Cell identities in the maize SAM reflect the combinatorial activity of transcription factors (TFs) that drive the preferential, differential expression of individual members within gene families functioning in a plethora of cellular processes. Subfunctionalization thus emerges as a fundamental feature underlying cell identity. Moreover, we show that adult plant characters are, to a significant degree, regulated by gene circuitries acting in the SAM, with natural variation modulating agronomically important architectural traits enriched specifically near dynamically expressed SAM genes and the TFs that regulate them. Besides unique mechanisms of maize stem cell regulation, our atlas thus identifies key new targets for crop improvement.


Asunto(s)
Arabidopsis/genética , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas , Meristema/genética , Arabidopsis/metabolismo , Meristema/metabolismo
12.
Planta ; 255(2): 35, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35015132

RESUMEN

MAIN CONCLUSION: SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.


Asunto(s)
Sorghum , Bases de Datos Genéticas , Grano Comestible , Genoma de Planta/genética , Genómica , Internet , Fitomejoramiento , Sorghum/genética
13.
Bioinformatics ; 38(1): 261-264, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34297055

RESUMEN

SUMMARY: Genome sequencing projects annotate protein-coding gene models with multiple transcripts, aiming to represent all of the available transcript evidence. However, downstream analyses often operate on only one representative transcript per gene locus, sometimes known as the canonical transcript. To choose canonical transcripts, Transcript Ranking and Canonical Election (TRaCE) holds an 'election' in which a set of RNA-seq samples rank transcripts by annotation edit distance. These sample-specific votes are tallied along with other criteria such as protein length and InterPro domain coverage. The winner is selected as the canonical transcript, but the election proceeds through multiple rounds of voting to order all the transcripts by relevance. Based on the set of expression data provided, TRaCE can identify the most common isoforms from a broad expression atlas or prioritize alternative transcripts expressed in specific contexts. AVAILABILITY AND IMPLEMENTATION: Transcript ranking code can be found on GitHub at {{https://github.com/warelab/TRaCE}}. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Política , Isoformas de Proteínas , RNA-Seq
14.
Bioinformatics ; 37(3): 382-387, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32777814

RESUMEN

SUMMARY: With the advance of next-generation sequencing technologies and reductions in the costs of these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative trait loci but also a useful way to identify causal gene mutations underlying phenotypes of interest. However, due to the presence of background mutations and errors in sequencing, genotyping, and reference assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a probabilistic model for estimating the linked region (the region linked to the causal mutation) and an interactive Shiny web application for visualizing the results. We deeply sequenced a sorghum male-sterile parental line (ms8) to capture the majority of background mutations in our bulked F2 data. We applied the workflow to 11 bulked sorghum F2 populations and 1 rice F2 population and identified the true causal mutation in each population. The workflow is intuitive and straightforward, facilitating its adoption by users without bioinformatics analysis skills. We anticipate that the BSAseq workflow will be broadly applicable to the identification of causal mutations for many phenotypes of interest. AVAILABILITY AND IMPLEMENTATION: BSAseq is freely available on https://www.sciapps.org/page/bsa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sitios de Carácter Cuantitativo , Internet , Mutación , Sorghum/genética , Flujo de Trabajo
15.
Nucleic Acids Res ; 48(D1): D1093-D1103, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31680153

RESUMEN

Plant Reactome (https://plantreactome.gramene.org) is an open-source, comparative plant pathway knowledgebase of the Gramene project. It uses Oryza sativa (rice) as a reference species for manual curation of pathways and extends pathway knowledge to another 82 plant species via gene-orthology projection using the Reactome data model and framework. It currently hosts 298 reference pathways, including metabolic and transport pathways, transcriptional networks, hormone signaling pathways, and plant developmental processes. In addition to browsing plant pathways, users can upload and analyze their omics data, such as the gene-expression data, and overlay curated or experimental gene-gene interaction data to extend pathway knowledge. The curation team actively engages researchers and students on gene and pathway curation by offering workshops and online tutorials. The Plant Reactome supports, implements and collaborates with the wider community to make data and tools related to genes, genomes, and pathways Findable, Accessible, Interoperable and Re-usable (FAIR).


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica , Metabolómica , Plantas/genética , Plantas/metabolismo , Proteómica , Redes Reguladoras de Genes , Genómica/métodos , Humanos , Redes y Vías Metabólicas , Metabolómica/métodos , Proteómica/métodos , Transducción de Señal , Navegador Web
16.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955798

RESUMEN

In plants, vegetative and reproductive development are associated with agronomically important traits that contribute to grain yield and biomass. Zinc finger homeodomain (ZF-HD) transcription factors (TFs) constitute a relatively small gene family that has been studied in several model plants, including Arabidopsis thaliana L. and Oryza sativa L. The ZF-HD family members play important roles in plant growth and development, but their contribution to the regulation of plant architecture remains largely unknown due to their functional redundancy. To understand the gene regulatory network controlled by ZF-HD TFs, we analyzed multiple loss-of-function mutants of ZF-HD TFs in Arabidopsis that exhibited morphological abnormalities in branching and flowering architecture. We found that ZF-HD TFs, especially HB34, negatively regulate the expression of miR157 and positively regulate SQUAMOSA PROMOTER BINDING-LIKE 10 (SPL10), a target of miR157. Genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq) analysis revealed that miR157D and SPL10 are direct targets of HB34, creating a feed-forward loop that constitutes a robust miRNA regulatory module. Network motif analysis contains overrepresented coherent type IV feedforward motifs in the amiR zf-HD and hbq mutant background. This finding indicates that miRNA-mediated ZF-HD feedforward modules modify branching and inflorescence architecture in Arabidopsis. Taken together, these findings reveal a guiding role of ZF-HD TFs in the regulatory network module and demonstrate its role in plant architecture in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc
17.
Genome Res ; 28(6): 921-932, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29712755

RESUMEN

Maize and sorghum are both important crops with similar overall plant architectures, but they have key differences, especially in regard to their inflorescences. To better understand these two organisms at the molecular level, we compared expression profiles of both protein-coding and noncoding transcripts in 11 matched tissues using single-molecule, long-read, deep RNA sequencing. This comparative analysis revealed large numbers of novel isoforms in both species. Evolutionarily young genes were likely to be generated in reproductive tissues and usually had fewer isoforms than old genes. We also observed similarities and differences in alternative splicing patterns and activities, both among tissues and between species. The maize subgenomes exhibited no bias in isoform generation; however, genes in the B genome were more highly expressed in pollen tissue, whereas genes in the A genome were more highly expressed in endosperm. We also identified a number of splicing events conserved between maize and sorghum. In addition, we generated comprehensive and high-resolution maps of poly(A) sites, revealing similarities and differences in mRNA cleavage between the two species. Overall, our results reveal considerable splicing and expression diversity between sorghum and maize, well beyond what was reported in previous studies, likely reflecting the differences in architecture between these two species.


Asunto(s)
Empalme Alternativo/genética , Sorghum/genética , Zea mays/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética
18.
Plant Cell ; 30(12): 3006-3023, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30563848

RESUMEN

The maize (Zea mays) mutant Unstable factor for orange1 (Ufo1) has been implicated in the epigenetic modifications of pericarp color1 (p1), which regulates the production of the flavonoid pigments phlobaphenes. Here, we show that the ufo1 gene maps to a genetically recalcitrant region near the centromere of chromosome 10. Transcriptome analysis of Ufo1-1 mutant and wild-type plants identified a candidate gene in the mapping region using a comparative sequence-based approach. The candidate gene, GRMZM2G053177, is overexpressed by >45-fold in multiple tissues of Ufo1-1, explaining the dominance of Ufo1-1 and its phenotypes. In the mutant stock, GRMZM2G053177 has a unique transcript originating within a CACTA transposon inserted in its first intron, and it is missing the first four codons of the wild-type transcript. GRMZM2G053177 expression is regulated by the DNA methylation status of the CACTA transposon, explaining the incomplete penetrance and poor expressivity of Ufo1-1 Transgenic overexpression lines of GRMZM2G053177 (Ufo1-1) phenocopy the p1-induced pigmentation in coleoptiles, tassels, leaf sheaths, husks, pericarps, and cob glumes. Transcriptome analysis of Ufo1 versus wild-type tissues revealed changes in several pathways related to abiotic and biotic stress. Thus, this study addresses the enigma of Ufo1 identity in maize, which had gone unsolved for more than 50 years.


Asunto(s)
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Fenotipo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética
19.
Plant Cell ; 29(11): 2687-2710, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28947489

RESUMEN

Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Mitocondrias/enzimología , Péptido Hidrolasas/metabolismo , Plastidios/enzimología , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Mitocondrias/genética , Péptido Hidrolasas/clasificación , Péptido Hidrolasas/genética , Filogenia , Plastidios/genética , Proteoma/genética , Proteoma/metabolismo , Proteostasis/genética
20.
Nucleic Acids Res ; 46(D1): D1181-D1189, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29165610

RESUMEN

Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Bases del Conocimiento , Plantas/genética , Epigénesis Genética , Ontología de Genes , Investigación Genética , Variación Genética , Genoma de Planta , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Plantas/metabolismo , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA