Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 15(12): 7886-92, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26510098

RESUMEN

Great efforts have been made to synthesize ZnO nanowires (NWs) as building blocks for a broad range of applications because of their unique mechanical and mechanoelectrical properties. However, little attention has been paid to the correlation between the NWs synthesis condition and these properties. Here we demonstrate that by slightly adjusting the NW growth conditions, the cross-sectional shape of the NWs can be tuned from hexagonal to circular. Room temperature photoluminescence spectra suggested that NWs with cylindrical geometry have a higher density of point defects. In situ transmission electron microscopy (TEM) uniaxial tensile-electrical coupling tests revealed that for similar diameter, the Young's modulus and electrical resistivity of hexagonal NWs is always larger than that of cylindrical NWs, whereas the piezoresistive coefficient of cylindrical NWs is generally higher. With decreasing diameter, the Young's modulus and the resistivity of NWs increase, whereas their piezoresistive coefficient decreases, regardless of the sample geometry. Our findings shed new light on understanding and advancing the performance of ZnO-NW-based devices through optimizing the synthesis conditions of the NWs.

2.
Nat Mater ; 7(2): 115-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18157134

RESUMEN

The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years. Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease, leading to attempts to augment existing ideas about pronounced size effects with new models and simulations. Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed 'mechanical annealing', leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources.

3.
ACS Omega ; 2(6): 2985-2993, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457633

RESUMEN

Quasi-one-dimensional structures from metal oxides have shown remarkable potentials with regard to their applicability in advanced technologies ranging from ultraresponsive nanoelectronic devices to advanced healthcare tools. Particularly due to the piezoresistive effects, zinc oxide (ZnO)-based nanowires showed outstanding performance in a large number of applications, including energy harvesting, flexible electronics, smart sensors, etc. In the present work, we demonstrate the versatile crystal engineering of ZnO nano- and microwires (up to centimeter length scales) by a simple flame transport process. To investigate the piezoresistive properties, particular ZnO nanowires were integrated on an electrical push-to-pull device, which enables the application of tensile strain and measurement of in situ electrical properties. The results from ZnO nanowires revealed a periodic variation in stress with respect to the applied periodic potential, which has been discussed in terms of defect relaxations.

4.
Nat Mater ; 5(9): 697-702, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906139

RESUMEN

In nanoscale contact experiments, it is generally believed that the shear stress at the onset of plasticity can approach the theoretical shear strength of an ideal, defect-free lattice, a trend also observed in idealized molecular dynamics simulations. Here we report direct evidence that plasticity in a dislocation-free volume of polycrystalline aluminium can begin at very small forces, remarkably, even before the first sustained rise in repulsive force. However, the shear stresses associated with these very small forces do approach the theoretical shear strength of aluminium (approximately 2.2 GPa). Our observations entail correlating quantitative load-displacement measurements with individual video frames acquired during in situ nanoindentation experiments in a transmission electron microscope. We also report direct evidence that a submicrometre grain of aluminium plastically deformed by nanoindentation to a dislocation density of approximately 10(14) m(-2) is also capable of supporting shear stresses close to the theoretical shear strength. This result is contrary to earlier assumptions that a dislocation-free volume is necessary to achieve shear stresses near the theoretical shear strength of the material. Moreover, our results in entirety are at odds with the prevalent notion that the first obvious displacement excursion in a nanoindentation test is indicative of the onset of plastic deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA