RESUMEN
Neurogenesis is a finely tuned process, which depends on the balanced execution of expression programs that regulate cellular differentiation and proliferation. Different molecular players ranging from transcription factors to chromatin modulators control these programs. Adding to the complexity, also non-coding (nc)RNAs take part in this process. Here we analyzed the function of the long non-coding (lnc)RNA Malat1 during neural embryonic stem cell (ESC) differentiation. We find that deletion of Malat1 leads to inhibition of proliferation of neural progenitor cells (NPCs). Interestingly, this co-insides with an increase in the expression of miR-26 family members miR-26a and miR-26b in differentiating ESCs. Inactivation of miR-26a/b rescues the proliferative phenotype of Malat1 knockout (KO) cells and leads to accelerated neuronal differentiation of compound Malat1KO/mir-26KO ESCs. Together our work identifies a so far unknown interaction between Malat1 and miR-26 in the regulation of NPC proliferation and neuronal differentiation.
RESUMEN
Open-heart surgery is associated with high morbidity, with acute kidney injury (AKI) being one of the most commonly observed postoperative complications. Following open-heart surgery, in an observational study we found significantly higher numbers of blood neutrophils in a group of 13 patients with AKI compared to 25 patients without AKI (AKI: 12.9±5.4 ×109 cells/L; non-AKI: 10.1±2. 9 ×109 cells/L). Elevated serum levels of neutrophil extracellular trap (NETs) components, such as dsDNA, histone 3, and DNA binding protein Y-box protein (YB)-1, were found within the first 24 hours in patients who later developed AKI. We could demonstrate that NET formation and hypoxia triggered the release of YB-1, which was subsequently shown to act as a mediator of kidney tubular damage. Experimentally, in two models of AKI mimicking kidney hypoperfusion during cardiac surgery (bilateral ischemia/reperfusion (I/R) and systemic lipopolysaccharide (LPS) administration), a neutralizing YB-1 antibody was administered to mice. In both models, prophylactic YB-1 antibody administration significantly reduced the tubular damage (damage score range 1-4, the LPS model: non-specific IgG control, 0.92±0.23; anti-YB-1 0.65±0.18; and in the I/R model: non-specific IgG control 2.42±0.23; anti-YB-1 1.86±0.44). Even in a therapeutic, delayed treatment model, antagonism of YB-1 ameliorated AKI (damage score, non-specific IgG control 3.03±0.31; anti-YB-1 2.58±0.18). Thus, blocking extracellular YB-1 reduced the effects induced by hypoxia and NET formation in the kidney and significantly limited AKI, suggesting that YB-1 is part of the NET formation process and an integral mediator of cross-organ effects.
Asunto(s)
Lesión Renal Aguda , Trampas Extracelulares , Daño por Reperfusión , Ratones , Animales , Proteínas de Unión al ADN , Lipopolisacáridos , Riñón , Isquemia/complicaciones , Hipoxia , Inmunoglobulina G , Daño por Reperfusión/complicaciones , Ratones Endogámicos C57BLRESUMEN
Repressor element 1-silencing transcription factor (REST) plays a crucial role in the differentiation of neural progenitor cells (NPCs). C-terminal domain small phosphatases (CTDSPs) are REST effector proteins that reduce RNA polymerase II activity on genes required for neurogenesis. miR-26b regulates neurogenesis in zebrafish by targeting ctdsp2 mRNA, but the molecular events triggered by this microRNA (miR) remain unknown. Here, we show in a murine embryonic stem cell differentiation paradigm that inactivation of miR-26 family members disrupts the formation of neurons and astroglia and arrests neurogenesis at the neural progenitor level. Furthermore, we show that miR-26 directly targets Rest, thereby inducing the expression of a large set of REST complex-repressed neuronal genes, including miRs required for induction of the neuronal gene expression program. Our data identify the miR-26 family as the trigger of a self-amplifying system required for neural differentiation that acts upstream of REST-controlled miRs.
Asunto(s)
MicroARNs , Animales , Diferenciación Celular/genética , Ratones , MicroARNs/genética , Neurogénesis/genética , ARN Mensajero/genética , Proteínas Represoras , Factores de Transcripción , Pez Cebra/genéticaRESUMEN
Phosphorothioates (PSs) can be essential in stabilizing therapeutic oligonucleotides against enzymatic degradation. However, unless synthesis is performed with stereodefined amidites, each PS introduces a chemically undefined stereocenter, resulting in 2 n unique molecules in the final product and affecting downstream analytics and purification. Replacing the second non-bridging oxygen with sulfur results in phosphorodithioate (PS2) linkages, thereby removing the stereocenter. We describe synthesis and analytical data for N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) with PS2 in the GalNAc cluster and at the siRNA termini. All siRNA conjugates with PS2 internucleotide linkages were produced with good yield and showed improved analytical properties. PS2 in the GalNAc cluster had no, or only minor, effect on in vitro and in vivo activity. Except for the 5'-antisense position, PS2 modifications were well tolerated at the siRNA termini, and a single PS2 internucleotide linkage gave similar or improved stabilization and in vitro activity as the two PSs typically used for end stabilization. Surprisingly, several of the PS2-containing siRNA conjugates resulted in increased in vivo activity and duration of action compared to the same siRNA sequence stabilized with PS linkages, suggesting PS2 linkages as interesting options for siRNA strand design with a reduced number of undefined stereocenters.