Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phytopathology ; 107(7): 852-863, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28368237

RESUMEN

A collection of 122 isolates of Magnaporthe oryzae, from nine sub-Saharan African countries, was assessed for virulence diversity and genetic relatedness. The virulence spectrum was assessed by pathotype analysis with a panel of 43 rice genotypes consisting of differential lines carrying 24 blast resistance genes (R-genes), contemporary African rice cultivars, and susceptible checks. The virulence spectrum among isolates ranged from 5 to 80%. Five isolates were avirulent to the entire rice panel, while two isolates were virulent to ∼75% of the panel. Overall, cultivar 75-1-127, the Pi9 R-gene donor, was resistant to all isolates (100%), followed by four African rice cultivars (AR105, NERICA 15, 96%; NERICA 4, 91%; and F6-36, 90%). Genetic relatedness of isolates was assessed by single nucleotide polymorphisms derived from genotyping-by-sequencing and by vegetative compatibility tests. Phylogenetic analysis of SNPs of a subset of isolates (n = 78) revealed seven distinct clades that differed in virulence. Principal component analysis showed isolates from East Africa were genetically distinct from those from West Africa. Vegetative compatibility tests of a subset of isolates (n = 65) showed no common groups among countries. This study shows that blast disease could be controlled by pyramiding of Pi9 together with other promising R-genes into rice cultivars that are adapted to East and West African regions.


Asunto(s)
Variación Genética , Magnaporthe/genética , Magnaporthe/patogenicidad , África del Sur del Sahara , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Virulencia
2.
Phytopathology ; 97(10): 1305-14, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18943689

RESUMEN

ABSTRACT Based on spore morphology, appressorium development, sequence similarities of the rDNA, and similarities in amplified restriction fragment length polymorphism (AFLP), it has been proposed that Colletotrichum orbiculare, C. trifolii, C. lindemuthianum, and C. malvarum represent a single phylogenetic species, C. orbiculare. In the current study, the phylogenetic relationship among isolates in the C. orbiculare species complex was reassessed. In all, 72 isolates of C. orbiculare from cultivated cucurbit or weed hosts, C. trifolii from alfalfa, C. lindemuthianum from green bean, and C. malvarum from prickly sida (Sida spinosa) were examined for mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs), RFLPs and sequence variation of a 900-bp intron of the glutamine synthetase gene and a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase gene, and vegetative compatibility. In addition, host specificity was examined in foliar inoculations on cucurbit, bean, and alfalfa hosts. Inoculations also were conducted on cucumber fruit. Genetically distinct isolates, based on vegetative compatibility, within the species complex (C. orbiculare, C. trifolii, and C. malvarum) had an identical mtDNA haplotype (haplotype A) when examined with each of three different restriction enzymes. Isolates of C. lindemuthianum had a very similar mtDNA haplotype to haplotype A, with a single polymorphism detected with the enzyme HaeIII. The four species represent a phylogenetically closely related group based on a statistical analysis of the 900- and 200-bp intron sequences. However, distinct RFLPs in the 900-bp intron were consistently associated with each species and could be used to qualitatively and quantitatively distinguish each species. Furthermore, each of the species showed distinct host specificity, with isolates of C. orbiculare (from cucurbits), C. lindemuthianum, and C. trifolii being pathogenic only on cucurbits, green bean, and alfalfa, respectively. Consequently, distinct and fixed nucleotide, or genotypic (intron sequences and RFLPs) and phenotypic (host specificity) characteristics can be used to distinguish C. orbiculare, C. lindemuthianum, and C. trifolii from one another; therefore, they should be recognized as distinct species. This species delineation is consistent with the most current species concepts in fungi. More isolates and further characterization is needed to determine whether C. orbiculare from cocklebur and C. malvarum represent distinct species. RFLPs of the 900-bp intron may represent a relatively inexpensive, reliable, and useful diagnostic tool for general species differentiation in the genus Colletotrichum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA