Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 9790-9800, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38549219

RESUMEN

HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.


Asunto(s)
Simulación de Dinámica Molecular , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/química , Proteínas Proto-Oncogénicas c-mdm2/química , Unión Proteica , Espectroscopía de Resonancia Magnética
2.
Neurogenetics ; 25(1): 3-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882972

RESUMEN

Sphingomyelin phosphodiesterase 4 (SMPD4) encodes a member of the Mg2+-dependent, neutral sphingomyelinase family that catalyzes the hydrolysis of the phosphodiester bond of sphingomyelin to form phosphorylcholine and ceramide. Recent studies have revealed that biallelic loss-of-function variants of SMPD4 cause syndromic neurodevelopmental disorders characterized by microcephaly, congenital arthrogryposis, and structural brain anomalies. In this study, three novel loss-of-function SMPD4 variants were identified using exome sequencing (ES) in two independent patients with developmental delays, microcephaly, seizures, and brain structural abnormalities. Patient 1 had a homozygous c.740_741del, p.(Val247Glufs*21) variant and showed profound intellectual disability, hepatomegaly, a simplified gyral pattern, and a thin corpus callosum without congenital dysmorphic features. Patient 2 had a compound heterozygous nonsense c.2124_2125del, p.(Phe709*) variant and splice site c.1188+2dup variant. RNA analysis revealed that the c.1188+2dup variant caused exon 13 skipping, leading to a frameshift (p.Ala406Ser*6). In vitro transcription analysis using minigene system suggested that mRNA transcribed from mutant allele may be degraded by nonsense-mediated mRNA decay system. He exhibited diverse manifestations, including growth defects, muscle hypotonia, respiratory distress, arthrogryposis, insulin-dependent diabetes mellitus, sensorineural hearing loss, facial dysmorphism, and various brain abnormalities, including cerebral atrophy, hypomyelination, and cerebellar hypoplasia. Here, we review previous literatures and discuss the phenotypic diversity of SMPD4-related disorders.


Asunto(s)
Artrogriposis , Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Masculino , Humanos , Microcefalia/genética , Artrogriposis/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Cerebelo
3.
J Hum Genet ; 69(2): 91-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38102195

RESUMEN

More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.


Asunto(s)
Trastornos de los Cromosomas , Sitios de Empalme de ARN , Empalme del ARN , Femenino , Humanos , Intrones/genética , Secuenciación del Exoma , Empalme del ARN/genética , Secuencia de Bases , Análisis de Secuencia de ARN , Mosaicismo
4.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241676

RESUMEN

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Asunto(s)
Melatonina , Ratones , Animales , Melatonina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fosforilación , Ratones Endogámicos C3H , Kinuramina/metabolismo , Envejecimiento , Hipocampo/metabolismo , ARN Mensajero/metabolismo
5.
J Periodontal Res ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501307

RESUMEN

OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.

6.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512060

RESUMEN

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Asunto(s)
Miopatías Distales , Proteínas del Choque Térmico HSP40 , Animales , Ratones , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Músculo Esquelético/patología , Chaperonas Moleculares/genética , Debilidad Muscular/patología , Miopatías Distales/patología , Ratones Noqueados
7.
FASEB J ; 35(2): e21171, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33197074

RESUMEN

Skeletal muscles have a high metabolic capacity, which play key roles in glucose metabolism. Although periodontal disease increases the risk of metabolic syndrome, the relationship between periodontal bacterial infection and skeletal muscle metabolic dysfunction is unclear. We found that anti-Porphyromonas gingivalis (Pg) antibody titers positively correlated with intramuscular adipose tissue content (IMAC), fasting blood glucose, and HOMA-IR in metabolic syndrome patients. In C57BL/6J mice fed a high-fat diet, recipients of oral Pg (HFPg) had impaired glucose tolerance, insulin resistance, and higher IMAC compared to recipients of saline (HFco). The soleus muscle in HFPg mice exhibited fat infiltration and lower glucose uptake with higher Tnfa expression and lower insulin signaling than in HFco mice. Gene set enrichment analysis showed that TNFα signaling via NFκB gene set was enriched in the soleus muscle of HFPg mice. Moreover, TNF-α also decreased glucose uptake in C2C12 myoblast cells in vitro. Based on 16S rRNA sequencing, Pg administration altered the gut microbiome, particularly by decreasing the abundance of genus Turicibacter. Microbial network of the gut microbiome was dramatically changed by Pg administration. Our findings suggest that infection with Pg is a risk factor for metabolic syndrome and skeletal muscle metabolic dysfunction via gut microbiome alteration.


Asunto(s)
Infecciones por Bacteroidaceae/metabolismo , Glucemia/metabolismo , Microbioma Gastrointestinal/genética , Síndrome Metabólico/sangre , Músculo Esquelético/metabolismo , Enfermedades Periodontales/sangre , Porphyromonas gingivalis/metabolismo , Tejido Adiposo/metabolismo , Adulto , Anciano , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Infecciones por Bacteroidaceae/microbiología , Línea Celular Transformada , Dieta Alta en Grasa , Heces/microbiología , Femenino , Intolerancia a la Glucosa/metabolismo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Resistencia a la Insulina , Japón/epidemiología , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Síndrome Metabólico/microbiología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mioblastos/metabolismo , Enfermedades Periodontales/complicaciones , Enfermedades Periodontales/epidemiología , Enfermedades Periodontales/microbiología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/inmunología , ARN Ribosómico 16S/genética
8.
Zoolog Sci ; 39(4)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960027

RESUMEN

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Asunto(s)
Hipergravedad , Ingravidez , Animales , Carpa Dorada/genética , Carpa Dorada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , ARN Mensajero/genética
9.
J Hum Genet ; 66(12): 1193-1197, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34211110

RESUMEN

Heterozygous variants in TUBB encoding one of ß-tubulin isotypes are known to cause two overlapping developmental brain disorders, complex cortical dysplasia with other brain malformations (CDCBM) and congenital symmetric circumferential skin creases (CSCSC). To date, six cases of CSCSC and eight cases of CDCBM caused by nine heterozygous variants have been reported. Here we report two cases with novel de novo missense TUBB variants (NM_178014.4:c.863A>G, p.(Glu288Gly) and c.869C>T, p.(Thr290Ile)). Case 1 presented brain malformations consistent with tubulinopathies including abnormalities in cortex, basal ganglia, corpus callosum, brain stem, and cerebellum along with other systemic features such as coloboma, facial dysmorphisms, vesicoureteral reflux, hypoplastic kidney, and cutis laxa-like mild skin loosening. Another case presented abnormalities of the corpus callosum, brain stem, and cerebellum along with facial dysmorphisms. We reviewed previous literature and suggest the diversity of clinical findings of TUBB-related disorders.


Asunto(s)
Encéfalo/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/genética , Tubulina (Proteína)/genética , Alelos , Genotipo , Humanos , Fenotipo , Tubulina (Proteína)/metabolismo
10.
FASEB J ; 34(9): 12877-12893, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757452

RESUMEN

Anti-sclerostin monoclonal antibody romosozumab, a treatment for osteoporosis, reduced vertebral fracture risk and clinical fracture. Laser irradiation triggers various effects, including bio-stimulation, which can induce beneficial therapeutic effects and biological responses. Originally, we performed in vivo experiments to clarify the mechanism of better bone healing in laser-ablated bone. Here, we evaluated comprehensive and sequential gene expression in Er:YAG laser-ablated, bur-drilled, and nontreated control bones, and found laser irradiation suppressed Sost (coding protein: sclerostin) expression in the bone, possibly via stimulation of mechanotransducers. Surprisingly, bio-stimulation effect of laser suppressed Sost expression in the primary osteogenic cells. Decreased sclerostin expression after laser irradiation was also validated both in vivo and in vitro. In addition, sequential microarray analysis revealed that the gene expression pattern was clearly different at 24 hours after bone ablation between bur-drilled and laser-ablated bones. The Hippo signaling pathway was significantly enriched, whereas inflammation-related pathways were not affected at 6 hours after the laser ablation, indicating that laser irradiation caused mechanical stimulation. Only bur-drilled bone showed enriched inflammation-related gene sets and pathways at 24 hours, not in the laser-ablated bone. Our study suggests that laser irradiation may become a new treatment modality for osteoporosis, by inhibiting sclerostin expression without inducing inflammation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Fracturas Óseas , Terapia por Láser , Osteoblastos/metabolismo , Osteogénesis , Animales , Fracturas Óseas/metabolismo , Fracturas Óseas/terapia , Regulación de la Expresión Génica/efectos de la radiación , Marcadores Genéticos , Masculino , Osteoblastos/citología , Ratas , Ratas Wistar
11.
J Pineal Res ; 70(1): e12703, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33125735

RESUMEN

Melatonin (MEL) has been reported to enhance cognitive processes, making it a potential treatment for cognitive decline. However, the role of MEL's metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in these effects are unknown. The current study directly investigated the acute effects of systemic MEL, AFMK, and AMK on novel object recognition. We also analyzed MEL, AFMK, and AMK levels in hippocampus and temporal lobe containing the perirhinal cortex following systemic MEL and AMK treatment. AMK administered post-training had a more potent effect on object memory than MEL and AFMK. AMK was also able to rescue age-associated declines in memory impairments when object memory was tested up to 4 days following training. Results from administering AMK at varying times around the training trial and the metabolism time course in brain tissue suggest that AMK's memory-enhancing effects reflect memory consolidation. Furthermore, inhibiting the MEL-to-AMK metabolic pathway disrupted object memory at 24 hours post-training, suggesting that endogenous AMK might play an important role in long-term memory formation. This is the first study to report that AMK facilitates long-term object memory performance in mice, and that MEL crosses the blood-brain barrier and is immediately converted to AMK in brain tissue. Overall, these results support AMK as a potential therapeutic agent to improve or prevent memory decline.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Kinuramina/análogos & derivados , Melatonina/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Factores de Edad , Animales , Biotransformación , Hipocampo/metabolismo , Kinuramina/metabolismo , Kinuramina/farmacología , Masculino , Melatonina/deficiencia , Melatonina/genética , Ratones Endogámicos ICR , Prueba de Campo Abierto , Lóbulo Temporal/metabolismo , Factores de Tiempo
12.
J Chem Inf Model ; 61(9): 4594-4612, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506132

RESUMEN

SARS-CoV-2 is the causative agent of coronavirus (known as COVID-19), the virus causing the current pandemic. There are ongoing research studies to develop effective therapeutics and vaccines against COVID-19 using various methods and many results have been published. The structure-based drug design of SARS-CoV-2-related proteins is promising, however, reliable information regarding the structural and intra- and intermolecular interactions is required. We have conducted studies based on the fragment molecular orbital (FMO) method for calculating the electronic structures of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside the protein complexes. Such precise interaction data are available in the FMO database (FMODB) (https://drugdesign.riken.jp/FMODB/). Since April 2020, we have performed several FMO calculations on the structures of SARS-CoV-2-related proteins registered in the Protein Data Bank. We have published the results of 681 structures, including three structural proteins and 11 nonstructural proteins, on the COVID-19 special page (as of June 8, 2021). In this paper, we describe the entire COVID-19 special page of the FMODB and discuss the calculation results for various proteins. These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Humanos , Pandemias , Proteínas
13.
Am J Physiol Endocrinol Metab ; 318(4): E492-E503, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32017594

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been reported to improve obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in addition to exercise training, whereas the combined effects remain to be elucidated fully. We investigated the effect of the combination of the SGLT2i canagliflozin (CAN) and exercise training in high-fat diet-induced obese mice. High-fat diet-fed mice were housed in normal cages (sedentary; Sed) or wheel cages (WCR) with or without CAN (0.03% of diet) for 4 wk. The effects on obesity, glucose metabolism, and hepatic steatosis were evaluated in four groups (Control/Sed, Control/WCR, CAN/Sed, and CAN/WCR). Numerically additive improvements were found in body weight, body fat mass, blood glucose, glucose intolerance, insulin resistance, and the fatty liver of the CAN/WCR group, whereas CAN increased food intake and reduced running distance. Exercise training alone, CAN alone, or both did not change the weight of skeletal muscle, but microarray analysis showed that each resulted in a characteristic change of gene expression in gastrocnemius muscle. In particular, in the CAN/WCR group, there was acceleration of the angiogenesis pathway and suppression of the adipogenesis pathway compared with the CAN/Sed group. In conclusion, the combination of an SGLT2i and exercise training improves obesity, insulin resistance, and NAFLD in an additive manner. Changes of gene expression in skeletal muscle may contribute, at least in part, to the improvement of obesity and insulin sensitivity.


Asunto(s)
Canagliflozina/farmacología , Dieta Alta en Grasa , Condicionamiento Físico Animal/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/crecimiento & desarrollo , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/metabolismo , Obesidad/prevención & control
14.
Chem Pharm Bull (Tokyo) ; 68(8): 737-741, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741914

RESUMEN

Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl group, but not for a vinyl group. Here, we constructed two computational models for allenylcyclopentane-alkyne and vinylcyclopentane-alkyne, and obtained their reaction pathways using density functional theory (DFT). From the reaction pathways, we confirmed that the former model has a much lower reaction energy than the latter. We also found that the molecular orbitals of the transition state structure at the rate-controlling step contribute significantly to the difference in reactivity between the two models.


Asunto(s)
Alquinos/química , Ciclopentanos/química , Teoría Funcional de la Densidad , Compuestos de Vinilo/química , Catálisis , Reacción de Cicloadición/métodos , Rodio/química , Termodinámica
16.
Acta Odontol Scand ; 76(6): 433-441, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29334319

RESUMEN

OBJECTIVE: Growing evidence indicates an association between periodontitis and delivery outcome; however, the mechanism is unclear. This study aimed to investigate the influence of Porphyromonas gingivalis (Pg) infection on delivery outcome in mice. MATERIALS AND METHODS: Bacteremia was induced in pregnant Slc:ICR mice (8 weeks old) by intravenous injection of Pg. Mice were randomly divided into a control group (CO), and those receiving Pg injection at gestational day 1 (GD1), gestational day 15 (GD15) or every day (ED). Delivery outcome, Pg infection, and gene expression in the placenta and umbilical cord were evaluated. RESULTS: Birth weight was lower in the ED and GD15 groups than in the CO group. A remarkable increase in anti-Pg IgG antibody was observed in the ED and GD1 groups, although Pg was not detected in the placenta or umbilical cord. mRNA expression of Tnfα and Il6 in the placenta, and Hif1α in the umbilical cord, was significantly increased in the ED group. Microarray analysis of the umbilical cord revealed increased expression of several genes including Orm1, Mgl2, Rps6ka3 and Trim15 in the ED group. CONCLUSIONS: Pg infection during the third trimester caused low birth weight and inflammation in the placenta and umbilical cord.


Asunto(s)
Peso al Nacer , Periodontitis/metabolismo , Placenta/microbiología , Porphyromonas gingivalis/metabolismo , Preñez/metabolismo , Cordón Umbilical/microbiología , Animales , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos ICR , Embarazo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Molecules ; 24(1)2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585226

RESUMEN

Phytochemical analysis of the tubers of Eranthis cilicica was performed as part of our continuous study on the plants of the family Ranunculaceae, which resulted in the isolation of eleven new cycloartane glycosides (1⁻11) and one new oleanane glycoside (13), together with one known oleanane glycoside (12). The structures of the new compounds were determined by extensive spectroscopic analysis, including two-dimensional (2D) NMR, and enzymatic hydrolysis followed by either X-ray crystallographic or chromatographic analysis. The aglycone (1a) of 2 and its C-23 epimer (8a), and the oleanane glycosides (12 and 13) showed cytotoxic activity against HL-60 leukemia cells with IC50 values ranging from 10.6 µM to 101.6 µM. HL-60 cells were much more sensitive to 8a (IC50 14.8 µM) than 1a (IC50 101.1 µM), indicating that the C-23 configuration is associated with the cytotoxicity of these cycloartane derivatives. Compound 12 was revealed so as to partially induce apoptotic cell death in HL-60 cells, as was evident from morphology of HL-60 cells treated with 12.


Asunto(s)
Glicósidos/química , Ácido Oleanólico/análogos & derivados , Ranunculaceae/metabolismo , Triterpenos/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Glicósidos/farmacología , Células HL-60 , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Tubérculos de la Planta/química
18.
J Biosci Bioeng ; 137(4): 304-312, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296748

RESUMEN

To optimize rapidly the medium for green fluorescent protein expression by Escherichia coli with an introduced plasmid, pRSET/emGFP, a single-cycle optimization pipeline was applied. The pipeline included a deep neural network (DNN) and mathematical optimization algorithms with simultaneous optimization of 18 medium components. To evaluate the DNN data sampling method, two methods, orthogonal array (OA) and Latin hypercube sampling (LHS), were used to design 64 initial media for each sampling method. The OA- and LHS-based data sampling resulted in green fluorescent protein fluorescence intensities of 0.088 × 103-1.85 × 104 and 3.30 × 103-1.50 × 104, respectively. Fifty DNN models were built using the OA and LHS datasets. Hold-out validation was performed using 15 % test of OA and LHS data. Mean square errors of the DNN models were 0.015-0.64, indicating the estimation accuracies were sufficient. However, the sensitivities of components in the DNN models varied and were grouped into six major classes by the index of k-means clustering. A representative model was selected for each class. Mathematical optimization algorithms using Bayesian optimization and genetic algorithm were applied to the representative models, and representative optimized medium (OM) compositions were selected by k-means clustering from the proposed OMs. A total of 54 OMs were obtained from the OA and LHS datasets. In the validating cultivation, the best OMs of OA and LHS were 2.12-fold and 2.13-fold higher, respectively, than those of the learning data.


Asunto(s)
Escherichia coli , Redes Neurales de la Computación , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Teorema de Bayes , Algoritmos
19.
Clin Nucl Med ; 49(3): 242-243, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306376

RESUMEN

ABSTRACT: A 56-year-old man was born to consanguineous parents. He experienced slow-progressing sensory disturbances in the upper extremities. T1-weighted images showed cerebellar atrophy. 123I-IMP SPECT revealed reduced cerebral blood flow in the cerebellum. 123I-FP-CIT SPECT showed low uptake of dopamine transporter in the bilateral tail of the striatum. 123I-MIBG scintigraphy shows a decreased heart-to-mediastinum ratio. Flanking polymerase chain reaction suggested biallelic repeat expansion in intron 2 of RFC1, and subsequent repeat-primed polymerase chain reaction revealed ACAGG repeat expansion. Thus, he was diagnosed as cerebellar ataxia with neuropathy and vestibular areflexia syndrome.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Masculino , Humanos , Persona de Mediana Edad , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Proteína de Replicación C/genética , Vestibulopatía Bilateral/diagnóstico , Cerebelo , Síndrome
20.
Sci Rep ; 14(1): 3792, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360913

RESUMEN

In onion thrips Thrips tabaci, reduced sensitivity of the sodium channel caused by several sodium channel mutations have been correlated with pyrethroid resistance. For this study, using mitochondrial cytochrome c oxidase subunit I gene sequences, we examined the phylogenetic relation among a total of 52 thelytokous and arrhenotokous strains with different genotypes of the sodium channel mutations. Then, we used flow cytometry to estimate their ploidy. Results showed that the strains are divisible into three groups: diploid thelytoky, triploid thelytoky, and diploid arrhenotoky. Using 23 whole genome resequencing data obtained from 20 strains out of 52, we examined their genetic relation further using principal component analysis, admixture analysis, and a fixation index. Results showed that diploid and triploid thelytokous groups are further classifiable into two based on the sodium channel mutations harbored by the respective group members (strains). The greatest genetic divergence was observed between thelytokous and arrhenotokous groups with a pair of T929I and K1774N. Nevertheless, they shared a genomic region with virtually no polymorphism around the sodium channel gene loci, suggesting a hard selective sweep. Based on these findings, we discuss the evolutionary origin and distribution of the sodium channel mutations in T. tabaci.


Asunto(s)
Thysanoptera , Animales , Cebollas , Filogenia , Triploidía , Aminoácidos/metabolismo , Mutación , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA