Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 33(11): 2854-2862, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32993298

RESUMEN

The UDP-glycosyltransferase (UGT) family of enzymes are important in the metabolism of a variety of exogenous substances including polycyclic aromatic hydrocarbons (PAHs), a potent class of environmental carcinogens. As compared to the majority of UGT enzymes, which utilize UDP-glucuronic acid as a cosubstrate, UGT3A2 utilizes alternative cosubstrates (UDP-glucose and UDP-xylose). UGT3A2 is expressed in aerodigestive tract tissues and was highly active against multiple PAHs with both cosubstrates. The goal of the present study was to assess the functional effects of UGT3A2 missense variants (MAF ≥ 0.005) on PAH metabolism and the utilization of cosubstrates. The glycosylation activity (Vmax/Km) of all variants against simple PAHs using both cosubstrates was significantly (P < 0.05) decreased by 42-100% when compared to wild-type UGT3A2. When utilizing UDP-glucose, the variant isoforms exhibited up to a 362-fold decrease in Vmax/Km when compared to wild-type UGT3A2, with a 3.1- to 14-fold decrease for D140N, A344T, and S435Y, a 24- and 43-fold decrease for A436T and R445C, respectively, and a 147- and 362-fold decrease for Y474C and Y74N, respectively. When utilizing UDP-xylose, the variants exhibited up to a 4.0-fold decrease in Vmax/Km when compared to wild-type UGT3A2; Y74N did not exhibit activity, and Y474C did not reach saturation (Km > 4000 µM). Additionally, both wild-type and variant UGT3A2 exhibited a significant (P < 0.05) difference in their utilization of UDP-glucose vs UDP-xylose as cosubstrates using 1-OH-pyrene as substrate. These data suggest that UGT3A2 missense variants decrease the detoxification of PAHs, potentially resulting in altered individual risk for PAH-related cancers.


Asunto(s)
Glicosiltransferasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Glicosiltransferasas/genética , Células HEK293 , Humanos , Mutación Missense
2.
Biochemistry ; 58(38): 3960-3970, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31469273

RESUMEN

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), in most organisms, catalyzes the four-electron reduction of the thioester (S)-HMG-CoA to the primary alcohol (R)-mevalonate, utilizing NADPH as the hydride donor. In some organisms, including the opportunistic lung pathogen Burkholderia cenocepacia, it catalyzes the reverse reaction, utilizing NAD+ as a hydride acceptor in the oxidation of mevalonate. B. cenocepacia HMGR has been previously shown to exist as an ensemble of multiple non-additive oligomeric states, each with different levels of enzymatic activity, suggesting that the enzyme exhibits characteristics of the morpheein model of allostery. We have characterized a number of factors, including pH, substrate concentration, and enzyme concentration, that modulate the structural transitions that influence the interconversion among the multiple oligomers. We have also determined the crystal structure of B. cenocepacia HMGR in the hexameric state bound to coenzyme A and ADP. This hexameric assembly provides important clues about how the transition among oligomers might occur, and why B. cenocepacia HMGR, unique among characterized HMGRs, exhibits morpheein-like behavior.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Estructura Cuaternaria de Proteína , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Coenzima A/química , Cristalografía por Rayos X , Pruebas de Enzimas , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/aislamiento & purificación , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
3.
Biochim Biophys Acta ; 1844(2): 457-64, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316250

RESUMEN

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme in endogenous cholesterol biosynthesis in mammals and isoprenoid biosynthesis via the mevalonate pathway in other eukaryotes, archaea and some eubacteria. In most organisms that express this enzyme, it catalyzes the NAD(P)H-dependent reduction of HMG-CoA to mevalonate. We have cloned and characterized the 6x-His-tagged HMGR from the opportunistic lung pathogen Burkholderia cenocepacia. Kinetic characterization shows that the enzyme prefers NAD(H) over NADP(H) as a cofactor, suggesting an oxidative physiological role for the enzyme. This hypothesis is supported by the fact that the Burkholderia cenocepacia genome lacks the genes for the downstream enzymes of the mevalonate pathway. The enzyme exhibits positive cooperativity toward the substrates of the reductive reaction, but the oxidative reaction exhibits unusual double-saturation kinetics, distinctive among characterized HMG-CoA reductases. The unusual kinetics may arise from the presence of multiple active oligomeric states, each with different Vmax values.


Asunto(s)
Burkholderia cenocepacia/enzimología , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Burkholderia cenocepacia/genética , Clonación Molecular , Coenzimas/química , Hidroximetilglutaril-CoA Reductasas/genética , Cinética , Ácido Mevalónico/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Homología de Secuencia de Aminoácido , Terpenos/metabolismo
4.
Anal Biochem ; 458: 66-8, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24792153

RESUMEN

Metal affinity chromatography using polyhistidine tags is a standard laboratory technique for the general purification of proteins from cellular systems, but there have been no attempts to explore whether the surface character of a protein may be engineered to similar affinity. We present the Arg160His mutation of Haemophilus influenzae carbonic anhydrase (HICA), which mimics the endogenous metal affinity of Escherichia coli carbonic anhydrase (ECCA). The purity and activity of the mutant are reported, and the purification is discussed. This is the first step toward developing a general method to engineer surface metal affinity for use in purification and metal labeling techniques.


Asunto(s)
Anhidrasas Carbónicas/aislamiento & purificación , Cromatografía de Afinidad , Histidina/metabolismo , Sustitución de Aminoácidos , Arginina/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Escherichia coli/enzimología , Haemophilus influenzae/enzimología , Cinética , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA