RESUMEN
Metagenomic binning has revolutionized the study of uncultured microorganisms. Here we compare single- and multi-coverage binning on the same set of samples, and demonstrate that multi-coverage binning produces better results than single-coverage binning and identifies contaminant contigs and chimeric bins that other approaches miss. While resource expensive, multi-coverage binning is a superior approach and should always be performed over single-coverage binning.
Asunto(s)
Metagenoma , Metagenómica , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , AlgoritmosRESUMEN
SUMMARY: Accurate gene prediction is essential for successful metagenome analysis. We present KOunt, a Snakemake pipeline, that precisely quantifies KEGG orthologue abundance. AVAILABILITY AND IMPLEMENTATION: KOunt is available on GitHub: https://github.com/WatsonLab/KOunt. The KOunt reference database is available on figshare: https://doi.org/10.6084/m9.figshare.21269715. Test data are available at https://doi.org/10.6084/m9.figshare.22250152 and version 1.2.0 of KOunt at https://doi.org/10.6084/m9.figshare.23607834.
Asunto(s)
Metagenoma , Programas Informáticos , Flujo de Trabajo , Bases de Datos FactualesRESUMEN
MOTIVATION: Iso-Seq RNA long-read sequencing enables the identification of full-length transcripts and isoforms, removing the need for complex analysis such as transcriptome assembly. However, the raw sequencing data need to be processed in a series of steps before annotation is complete. Here, we present nf-core/isoseq, a pipeline for automatic read processing and genome annotation. Following nf-core guidelines, the pipeline has few dependencies and can be run on any of platforms. AVAILABILITY AND IMPLEMENTATION: The pipeline is freely available online on the nf-core website (https://nf-co.re/isoseq) and on GitHub (https://github.com/nf-core/isoseq) under MIT License (DOI: 10.5281/zenodo.7116979).
Asunto(s)
Empalme Alternativo , Genoma , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN , Transcriptoma , Anotación de Secuencia MolecularRESUMEN
BACKGROUND: Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. RESULTS: By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. CONCLUSIONS: Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.
Asunto(s)
Genómica , Microbiota , Bovinos/genética , Animales , Fenotipo , Peso Corporal , Metagenoma , Alimentación AnimalRESUMEN
In flat-faced dog breeds, air resistance caused by skull conformation is believed to be a major determinant of Brachycephalic Obstructive Airway Syndrome (BOAS). The clinical presentation of BOAS is heterogeneous, suggesting determinants independent of skull conformation contribute to airway disease. Norwich Terriers, a mesocephalic breed, are predisposed to Upper Airway Syndrome (UAS), a disease whose pathological features overlap with BOAS. Our health screening clinic examined and scored the airways of 401 Norwich terriers by laryngoscopy. Genome-wide association analyses of UAS-related pathologies revealed a genetic association on canine chromosome 13 (rs9043975, p = 7.79x10-16). Whole genome resequencing was used to identify causal variant(s) within a 414 kb critical interval. This approach highlighted an error in the CanFam3.1 dog assembly, which when resolved, led to the discovery of a c.2786G>A missense variant in exon 20 of the positional candidate gene, ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). In addition to segregating with UAS amongst Norwich Terriers, the ADAMTS3 c.2786G>A risk allele frequency was enriched among the BOAS-susceptible French and (English) Bulldogs. Previous studies indicate that ADAMTS3 loss of function results in lymphoedema. Our results suggest a new paradigm in the understanding of canine upper airway disease aetiology: airway oedema caused by disruption of ADAMTS3 predisposes dogs to respiratory obstruction. These findings will enhance breeding practices and could refine the prognostics of surgical interventions that are often used to treat airway obstruction.
Asunto(s)
Proteínas ADAMTS/genética , Enfermedades de los Perros/genética , Mutación Missense , Enfermedad Pulmonar Obstructiva Crónica/genética , Alelos , Animales , Cromosomas de los Mamíferos/química , Susceptibilidad a Enfermedades , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/fisiopatología , Perros , Femenino , Expresión Génica , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Laringoscopía , Masculino , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Sistema Respiratorio/anatomía & histología , Sistema Respiratorio/diagnóstico por imagen , Sistema Respiratorio/fisiopatología , Cráneo/anatomía & histología , Secuenciación Completa del GenomaRESUMEN
RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.
Asunto(s)
Empalme Alternativo , Gráficos por Computador , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Isoformas de ARN/química , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismoRESUMEN
MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) and Marek's disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses.IMPORTANCE Marek's disease virus (MDV) is an alphaherpesvirus associated with Marek's disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.
Asunto(s)
Transformación Celular Viral/genética , Linfoma/virología , Mardivirus/patogenicidad , MicroARNs/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Transformada , Línea Celular Tumoral , Proliferación Celular , Humanos , Mardivirus/genética , ARN Viral/genéticaRESUMEN
Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of ovine pulmonary adenocarcinoma (OPA), a neoplastic lung disease of sheep. OPA is an important economic and welfare issue for sheep farmers and a valuable naturally occurring animal model for human lung adenocarcinoma. Here, we used RNA sequencing to study the transcriptional response of ovine lung tissue to infection by JSRV. We identified 1,971 ovine genes differentially expressed in JSRV-infected lung compared to noninfected lung, including many genes with roles in carcinogenesis and immunomodulation. The differential expression of selected genes was confirmed using immunohistochemistry and reverse transcription-quantitative PCR. A key finding was the activation of anterior gradient 2, yes-associated protein 1, and amphiregulin in OPA tumor cells, indicating a role for this oncogenic pathway in OPA. In addition, there was differential expression of genes related to innate immunity, including genes encoding cytokines, chemokines, and complement system proteins. In contrast, there was little evidence for the upregulation of genes involved in T-cell immunity. Many genes related to macrophage function were also differentially expressed, reflecting the increased abundance of these cells in OPA-affected lung tissue. Comparison of the genes differentially regulated in OPA with the transcriptional changes occurring in human lung cancer revealed important similarities and differences between OPA and human lung adenocarcinoma. This study provides valuable new information on the pathogenesis of OPA and strengthens the use of this naturally occurring animal model for human lung adenocarcinoma.IMPORTANCE Ovine pulmonary adenocarcinoma is a chronic respiratory disease of sheep caused by jaagsiekte sheep retrovirus (JSRV). OPA is a significant economic problem for sheep farmers in many countries and is a valuable animal model for some forms of human lung cancer. Here, we examined the changes in host gene expression that occur in the lung in response to JSRV infection. We identified a large number of genes with altered expression in infected lung, including factors with roles in cancer and immune system function. We also compared the data from OPA to previously published data from human lung adenocarcinoma and found a large degree of overlap in the genes that were dysregulated. The results of this study provide exciting new avenues for future studies of OPA and may have comparative relevance for understanding human lung cancer.
Asunto(s)
Retrovirus Ovino Jaagsiekte/fisiología , Pulmón/virología , Adenomatosis Pulmonar Ovina/genética , Adenocarcinoma del Pulmón/genética , Animales , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Adenomatosis Pulmonar Ovina/metabolismo , Adenomatosis Pulmonar Ovina/patología , Adenomatosis Pulmonar Ovina/virología , OvinosRESUMEN
MOTIVATION: Metagenomics is a powerful tool for assaying the DNA from every genome present in an environment. Recent advances in bioinformatics have enabled the rapid assembly of near-complete metagenome-assembled genomes (MAGs), and there is a need for reproducible pipelines that can annotate and characterize thousands of genomes simultaneously, to enable identification and functional characterization. RESULTS: Here we present MAGpy, a scalable and reproducible pipeline that takes multiple genome assemblies as FASTA and compares them to several public databases, checks quality, suggests a taxonomy and draws a phylogenetic tree. AVAILABILITY AND IMPLEMENTATION: MAGpy is available on github: https://github.com/WatsonLab/MAGpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Metagenoma , Programas Informáticos , Metagenómica , FilogeniaRESUMEN
Campylobacteriosis is the leading foodborne bacterial diarrheal illness in many countries, with up to 80% of human cases attributed to the avian reservoir. The only control strategies currently available are stringent on-farm biosecurity and carcass treatments. Heritable differences in the resistance of chicken lines to Campylobacter colonization have been reported and resistance-associated quantitative trait loci are emerging, although their impact on colonization appears modest. Recent studies indicated a protective role of the microbiota against colonization by Campylobacter in chickens. Furthermore, in murine models, differences in resistance to bacterial infections can be partially transferred between lines by transplantation of gut microbiota. In this study, we investigated whether heritable differences in colonization of inbred chicken lines by Campylobacter jejuni are associated with differences in cecal microbiota. We performed homologous and heterologous cecal microbiota transplants between line 61 (resistant) and line N (susceptible) by orally administering cecal contents collected from 3-week-old donors to day-of-hatch chicks. Recipient birds were challenged (day 21) with C. jejuni 11168H. In birds given homologous microbiota, the differential resistance of lines to C. jejuni colonization was reproduced. Contrary to our hypothesis, transfer of cecal microbiota from line 61 to line N significantly increased C. jejuni colonization. No significant difference in the overall composition of the cecal microbial communities of the two lines was identified, although line-specific differences for specific operational taxonomic units were identified. Our data suggest that while heritable differences in avian resistance to Campylobacter colonization exist, these are not explained by significant variation in the cecal microbiota.IMPORTANCECampylobacter is a leading cause of foodborne diarrheal disease worldwide. Poultry are a key source of human infections, but there are currently few effective measures against Campylobacter in poultry during production. One option to control Campylobacter may be to alter the composition of microbial communities in the avian intestines by introducing beneficial bacteria, which exclude the harmful ones. We previously described two inbred chicken lines which differ in resistance to intestinal colonization by Campylobacter Here, we investigated the composition of the microbial communities in the gut of these lines and whether transferring gut bacteria between the resistant and susceptible lines alters their resistance to Campylobacter No major differences in microbial populations were found, and resistance or susceptibility to colonization was not conferred by transferring gut bacteria between lines. The data suggest that gut microbiota did not play a role in resistance to Campylobacter colonization, at least in the lines used.
Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Ciego/microbiología , Pollos , Resistencia a la Enfermedad , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral/microbiología , Animales , Infecciones por Campylobacter/microbiología , Pollos/genética , Femenino , Endogamia , MasculinoRESUMEN
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Asunto(s)
Perfilación de la Expresión Génica , Genoma , Oveja Doméstica/genética , Transcriptoma/genética , Animales , Cruzamiento , Análisis por Conglomerados , Leche , Especificidad de Órganos/genéticaRESUMEN
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.
Asunto(s)
Variación Genética , Metano/metabolismo , Microbiota/fisiología , Rumen/microbiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Archaea/genética , Archaea/metabolismo , Bovinos , Femenino , Masculino , Metagenómica/métodos , Microbiota/genéticaRESUMEN
MOTIVATION: Oxford Nanopore's MinION device has matured rapidly and is now capable of producing over one million reads and several gigabases of sequence data per run. The nature of the MinION output requires new tools that are easy to use by scientists with a range of computational skills and which enable quick and simple QC and data extraction from MinION runs. RESULTS: We have developed two GUIs for the R package poRe that allow parallel and real-time processing of MinION datasets. Both GUIs are capable of extracting sequence- and meta- data from large MinION datasets via a friendly point-and-click interface using commodity hardware. AVAILABILITY AND IMPLEMENTATION: The GUIs are packaged within poRe which is available on SourceForge: https://sourceforge.net/projects/rpore/files/ . CONTACT: mick.watson@roslin.ed.ac.uk.
Asunto(s)
Nanoporos , Análisis de Secuencia de ADN/instrumentación , Programas Informáticos , Gráficos por ComputadorRESUMEN
The development and continuous improvement of high-throughput sequencing platforms have stimulated interest in the study of complex microbial communities. Currently, the most popular sequencing approach to study microbial community composition and dynamics is targeted 16S rRNA gene metabarcoding. To prepare samples for sequencing, there are a variety of processing steps, each with the potential to introduce bias at the data analysis stage. In this short review, key information from the literature pertaining to each processing step is described, and consequently, general recommendations for future 16S rRNA gene metabarcoding experiments are made.
Asunto(s)
Código de Barras del ADN Taxonómico/instrumentación , Microbiota/genética , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisisRESUMEN
Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains typically express high-level, homogeneous (HoR) ß-lactam resistance, whereas community-associated MRSA (CA-MRSA) more commonly express low-level heterogeneous (HeR) resistance. Expression of the HoR phenotype typically requires both increased expression of the mecA gene, carried on the staphylococcal cassette chromosome mec element (SCCmec), and additional mutational event(s) elsewhere on the chromosome. Here the oxacillin concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 µg/ml to 130 µg/ml over 13 days to isolate highly oxacillin-resistant derivatives. A stable, small-colony variant, designated HoR34, which had become established in the chemostat culture was found to have acquired mutations in gdpP, clpX, guaA, and camS Closer inspection of the genome sequence data further revealed that reads covering SCCmec were â¼10 times overrepresented compared to other parts of the chromosome. Quantitative PCR (qPCR) confirmed >10-fold-higher levels of mecA DNA on the HoR34 chromosome, and MinION genome sequencing verified the presence of 10 tandem repeats of the SCCmec element. qPCR further demonstrated that subculture of HoR34 in various concentrations of oxacillin (0 to 100 µg/ml) was accompanied by accordion-like contraction and amplification of the SCCmec element. Although slower growing than strain USA300, HoR34 outcompeted the parent strain in the presence of subinhibitory oxacillin. These data identify tandem amplification of the SCCmec element as a new mechanism of high-level methicillin resistance in MRSA, which may provide a competitive advantage for MRSA under antibiotic selection.
Asunto(s)
Cromosomas Bacterianos/genética , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Meticilina/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , beta-Lactamas/farmacologíaRESUMEN
Marek's disease virus (MDV), an alphaherpesvirus of poultry, causes Marek's disease and is characterized by visceral CD4+TCRαß+ T-cell lymphomas in susceptible hosts. Immortal cell lines harbouring the viral genome have been generated from ex vivo cultures of MD tumours. As readily available sources of large numbers of cells, MDV-transformed lymphoblastoid cell lines (LCLs) are extremely valuable for studies of virus-host interaction. While the viral genome in most cells is held in a latent state, minor populations of cells display spontaneous reactivation identifiable by the expression of lytic viral genes. Spontaneous reactivation in these cells presents an opportunity to investigate the biological processes involved in the virus reactivation. For detailed characterization of the molecular events associated with reactivation, we used two lymphoblastoid cell lines derived from lymphomas induced by pRB1B-UL47eGFP, a recombinant MDV engineered to express enhanced green fluorescent protein (EGFP) fused with the UL47. We used fluorescence-activated cell sorting to purify the low-frequency EGFP-positive cells with a spontaneously activating viral genome from the majority EGFP-negative cells and analysed their gene expression profiles by RNA-seq using Illumina HiSeq2500. Ingenuity pathway analysis on more than 2000 differentially expressed genes between the lytically infected (EGFP-positive) and latently infected (EGFP-negative) cell populations identified the biological pathways involved in the reactivation. Virus-reactivating cells exhibited differential expression of a significant number of viral genes, with hierarchical differences in expression levels. Downregulation of a number of host genes including those directly involved in T-cell activation, such as CD3, CD28, ICOS and phospholipase C, was also noticed in the LCL undergoing lytic switch.
Asunto(s)
Perfilación de la Expresión Génica , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Proteínas Virales/genética , Animales , Línea Celular Tumoral , Pollos , Regulación Viral de la Expresión Génica , Herpesvirus Gallináceo 2/fisiología , Linfoma/virología , Proteínas Virales/metabolismoRESUMEN
The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of the rel/NF-κB family of transcription factors capable of transformation of primary chicken spleen and bone marrow cells. Rapid transformation of avian haematopoietic cells by v-rel occurs through a process of deregulation of multiple protein-encoding genes through its direct effect on their promoters. More recently, upregulation of oncogenic miR-155 and its precursor pre-miR-155 was demonstrated in both Rev-T-infected chicken embryo fibroblast cultures and Rev-T-induced B-cell lymphomas. Through electrophoresis mobility shift assay and reporter analysis on the gga-miR-155 promoter, we showed that the v-rel-induced miR-155 overexpression occurred by the direct binding to one of the putative NF-κB binding sites. Using the v-rel-induced transformation model on chicken embryonic splenocyte cultures, we could demonstrate a dynamic increase in miR-155 levels during the transformation. Transcriptome profiles of lymphoid cells transformed by v-rel showed upregulation of miR-155 accompanied by downregulation of a number of putative miR-155 targets such as Pu.1 and CEBPß. We also showed that v-rel could rescue the suppression of miR-155 expression observed in Marek's disease virus (MDV)-transformed cell lines, where its functional viral homologue MDV-miR-M4 is overexpressed. Demonstration of gene expression changes affecting major molecular pathways, including organismal injury and cancer in avian macrophages transfected with synthetic mature miR-155, underlines its potential direct role in transformation. Our study suggests that v-rel-induced transformation involves a complex set of events mediated by the direct activation of NF-κB targets, together with inhibitory effects on microRNA targets.
Asunto(s)
Transformación Celular Viral , Interacciones Huésped-Patógeno , Proteínas Oncogénicas v-rel/metabolismo , ARN Mensajero/biosíntesis , Virus de la Reticuloendoteliosis/patogenicidad , Animales , Células Cultivadas , Pollos , Perfilación de la Expresión Génica , Leucocitos Mononucleares/virología , Regiones Promotoras Genéticas , Unión ProteicaRESUMEN
The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire.
Asunto(s)
Bovinos/genética , Flujo Genético , Variación Genética/genética , Genética de Población , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Antígenos de Histocompatibilidad Clase I/genética , Animales , Biología Computacional , Genotipo , Reacción en Cadena de la PolimerasaRESUMEN
UNLABELLED: Semliki Forest virus (SFV) provides a well-characterized model system to study the pathogenesis of virus encephalitis. Several studies have used virus derived from the molecular clone SFV4. SFV4 virus does not have the same phenotype as the closely related L10 or the prototype virus from which its molecular clone was derived. In mice, L10 generates a high-titer plasma viremia, is efficiently neuroinvasive, and produces a fatal panencephalitis, whereas low-dose SFV4 produces a low-titer viremia, rarely enters the brain, and generally is avirulent. To determine the genetic differences responsible, the consensus sequence of L10 was determined and compared to that of SFV4. Of the 12 nucleotide differences, six were nonsynonymous; these were engineered into a new molecular clone, termed SFV6. The derived virus, SFV6, generated a high-titer viremia and was efficiently neuroinvasive and virulent. The phenotypic difference mapped to a single amino acid residue at position 162 in the E2 envelope glycoprotein (lysine in SFV4, glutamic acid in SFV6). Analysis of the L10 virus showed it contained different plaque phenotypes which differed in virulence. A lysine at E2 247 conferred a small-plaque avirulent phenotype and glutamic acid a large-plaque virulent phenotype. Viruses with a positively charged lysine at E2 162 or 247 were more reliant on glycosaminoglycans (GAGs) to enter cells and were selected for by passage in BHK-21 cells. Interestingly, viruses with the greatest reliance on binding to GAGs replicated to higher titers in the brain and more efficiently crossed an in vitro blood-brain barrier (BBB). IMPORTANCE: Virus encephalitis is a major disease, and alphaviruses, as highlighted by the recent epidemic of chikungunya virus (CHIKV), are medically important pathogens. In addition, alphaviruses provide well-studied experimental systems with extensive literature, many tools, and easy genetic modification. In this study, we elucidate the genetic basis for the difference in phenotype between SFV4 and the virus stocks from which it was derived and correct this by engineering a new molecular clone. We then use this clone in one comprehensive study to demonstrate that positively charged amino acid residues on the surface of the E2 glycoprotein, mediated by binding to GAGs, determine selective advantage and plaque size in BHK-21 cells, level of viremia in mice, ability to cross an artificial BBB, efficiency of replication in the brain, and virulence. Together with studies on Sindbis virus (SINV), this study provides an important advance in understanding alphavirus, and probably other virus, encephalitis.
Asunto(s)
Infecciones por Alphavirus/virología , Barrera Hematoencefálica/virología , Encefalitis/virología , Virus de los Bosques Semliki/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/virología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Virus de los Bosques Semliki/química , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/patogenicidad , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Viremia/virología , VirulenciaRESUMEN
MOTIVATION: The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. RESULTS: Here we present poRe, a package for R that enables users to manipulate, organize, summarize and visualize MinION nanopore sequencing data. As a package for R, poRe has been tested on Windows, Linux and MacOSX. Crucially, the Windows version allows users to analyse MinION data on the Windows laptop attached to the device. AVAILABILITY AND IMPLEMENTATION: poRe is released as a package for R at http://sourceforge.net/projects/rpore/. A tutorial and further information are available at https://sourceforge.net/p/rpore/wiki/Home/.