Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Genet ; 18(1): e1010021, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100266

RESUMEN

The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.


Asunto(s)
Proteínas CLOCK/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Degeneración Retiniana/prevención & control , Transcripción Genética/fisiología , Envejecimiento/genética , Animales , Relojes Circadianos , Oscuridad , Fototransducción/genética , Degeneración Retiniana/metabolismo , Transcriptoma
2.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34908116

RESUMEN

The histone acetyltransferase Gcn5 is critical for gene expression and development. In Drosophila, Gcn5 is part of four complexes (SAGA, ATAC, CHAT and ADA) that are essential for fly viability and have key roles in regulating gene expression. Here, we show that although the SAGA, ADA and CHAT complexes play redundant roles in embryonic gene expression, the insect-specific CHAT complex uniquely regulates expression of a subset of developmental genes. We also identify a substantial decrease in histone acetylation in chiffon mutant embryos that exceeds that observed in Ada2b, suggesting broader roles for Chiffon in regulating histone acetylation outside of the Gcn5 complexes. The chiffon gene encodes two independent polypeptides that nucleate formation of either the CHAT or Dbf4-dependent kinase (DDK) complexes. DDK includes the cell cycle kinase Cdc7, which is necessary for maternally driven DNA replication in the embryo. We identify a temporal switch between the expression of these chiffon gene products during a short window during the early nuclear cycles in embryos that correlates with the onset of zygotic genome activation, suggesting a potential role for CHAT in this process. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Acetilación , Animales , Proteínas de Ciclo Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes del Desarrollo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas
3.
Cell ; 134(1): 16-8, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614004

RESUMEN

Heat shock loci in the polytene chromosomes of the fruit fly Drosophila undergo a characteristic change in appearance that coincides with the onset of gene expression. Petesch and Lis (2008) now show that nucleosomes are lost across the entire Hsp70 locus in an initial wave that precedes transcription by RNA polymerase II.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Animales , Drosophila/metabolismo , Transcripción Genética
4.
Mol Cell Proteomics ; 20: 100127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34332122

RESUMEN

Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Ojo/metabolismo , Ácido Fólico/biosíntesis , Mitocondrias/metabolismo , Envejecimiento/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas del Ojo/genética , Masculino , Metaboloma , Metabolómica , Proteómica
5.
Insect Mol Biol ; 31(6): 734-746, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35789507

RESUMEN

Chiffon is the sole Drosophila ortholog of Dbf4, the regulatory subunit for the cell-cycle kinase Cdc7 that initiates DNA replication. In Drosophila, the chiffon gene encodes two polypeptides with independent activities. Chiffon-A contains the conserved Dbf4 motifs and interacts with Cdc7 to form the Dbf4-dependent Kinase (DDK) complex, which is essential for a specialized form of DNA replication. In contrast, Chiffon-B binds the histone acetyltransferase Gcn5 to form the Chiffon histone acetyltransferase (CHAT) complex, which is necessary for histone H3 acetylation and viability. Previous studies have shown that the Chiffon-B region is only present within insects. However, it was unclear how widely the interaction between Chiffon-B and Gcn5 was conserved among insect species. To examine this, we performed yeast two-hybrid assays using Chiffon-B and Gcn5 from a variety of insect species and found that Chiffon-B and Gcn5 interact in Diptera species such as Australian sheep blowfly and yellow fever mosquito. Protein domain analysis identified that Chiffon-B has features of acidic transcriptional activators such as Gal4 or VP16. We propose that the CHAT complex plays a critical role in a biological process that is unique to Dipterans and could therefore be a potential target for pest control strategies.


Asunto(s)
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Australia , Replicación del ADN , Ciclo Celular , Drosophila/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Drosophila/genética
6.
Genes Dev ; 28(3): 259-72, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493646

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that reduction of Ataxin-7 protein results in loss of components from the SAGA complex. In contrast to yeast, where loss of Ataxin-7 inactivates the deubiquitinase and results in increased H2B ubiquitination, loss of Ataxin-7 results in decreased H2B ubiquitination and H3K9 acetylation without affecting other histone marks. Interestingly, the effect on ubiquitination was conserved in human cells, suggesting a novel mechanism regulating histone deubiquitination in higher organisms. Consistent with this mechanism in vivo, we found that a recombinant deubiquitinase module is active in the absence of Ataxin-7 in vitro. When we examined the consequences of reduced Ataxin-7 in vivo, we found that flies exhibited pronounced neural and retinal degeneration, impaired movement, and early lethality.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Retina/patología , Secuencia de Aminoácidos , Animales , Ataxina-7 , Drosophila melanogaster/enzimología , Células HeLa , Histonas/metabolismo , Humanos , Longevidad/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Regiones Promotoras Genéticas/genética , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
7.
J Cell Sci ; 132(2)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30559249

RESUMEN

Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas del Huevo/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Huevo/genética , Histona Acetiltransferasas/genética , Histonas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
New Phytol ; 223(1): 233-245, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30756399

RESUMEN

The Mediator complex functions as a hub for transcriptional regulation. MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semidominant mutation (ref4-3) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism. By contrast, loss of MED5 results in increased concentrations of phenylpropanoids. We used a reverse genetic approach to identify suppressors of ref4-3 and found that ref4-3 requires CDK8, a kinase module subunit of Mediator, to repress plant growth. The genetic interaction between MED5 and CDK8 was further characterized using mRNA-sequencing (RNA-seq) and metabolite analysis. Growth inhibition and suppression of phenylpropanoid metabolism can be genetically separated in ref4-3 by elimination of CDK8 kinase activity; however, the stunted growth of ref4-3 is not dependent on the phosphorylation event introduced by the G383S mutation. In addition, rather than perturbation of lignin biosynthesis, misregulation of DJC66, a gene encoding a DNAJ protein, is involved in the dwarfism of the med5 mutants. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Quinasa 8 Dependiente de Ciclina/genética , Complejo Mediador/metabolismo , Mutación/genética , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fenotipo , Fosforilación , Propanoles/metabolismo , Transcripción Genética
9.
J Exp Bot ; 70(21): 5995-6003, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504746

RESUMEN

Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.


Asunto(s)
Complejo Mediador/metabolismo , Plantas/metabolismo , Pared Celular/metabolismo , Metabolómica , Filogenia , Subunidades de Proteína/metabolismo
10.
Genes Dev ; 25(14): 1499-509, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21764853

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5' end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Músculos/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional , Acetilación , Animales , ADN Polimerasa II/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Músculos/enzimología , Neuronas/enzimología , Sistemas de Lectura Abierta , Péptido Hidrolasas/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
11.
BMC Neurosci ; 19(1): 43, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029619

RESUMEN

BACKGROUND: Light exposure induces oxidative stress, which contributes to ocular diseases of aging. Blue light provides a model for light-induced oxidative stress, lipid peroxidation and retinal degeneration in Drosophila melanogaster. In contrast to mature adults, which undergo retinal degeneration when exposed to prolonged blue light, newly-eclosed flies are resistant to blue light-induced retinal degeneration. Here, we sought to characterize the gene expression programs induced by blue light in flies of different ages to identify neuroprotective pathways utilized by photoreceptors to cope with light-induced oxidative stress. RESULTS: To identify gene expression changes induced by blue light exposure, we profiled the nuclear transcriptome of Drosophila photoreceptors from one- and six-day-old flies exposed to blue light and compared these with dark controls. Flies were exposed to 3 h blue light, which increases levels of reactive oxygen species but does not cause retinal degeneration. We identified substantial gene expression changes in response to blue light only in six-day-old flies. In six-day-old flies, blue light induced a neuroprotective gene expression program that included upregulation of stress response pathways and downregulation of genes involved in light response, calcium influx and ion transport. An intact phototransduction pathway and calcium influx were required for upregulation, but not downregulation, of genes in response to blue light, suggesting that distinct pathways mediate the blue light-associated transcriptional response. CONCLUSION: Our data demonstrate that under phototoxic conditions, Drosophila photoreceptors upregulate stress response pathways and simultaneously, downregulate expression of phototransduction components, ion transporters, and calcium channels. Together, this gene expression program both counteracts the calcium influx resulting from prolonged light exposure, and ameliorates the oxidative stress resulting from this calcium influx. Thus, six-day-old flies can withstand up to 3 h blue light exposure without undergoing retinal degeneration. Developmental transitions during the first week of adult Drosophila life lead to an altered gene expression program in photoreceptors that includes reduced expression of genes that maintain redox and calcium homeostasis, reducing the capacity of six-day-old flies to cope with longer periods (8 h) of light exposure. Together, these data provide insight into the neuroprotective gene regulatory mechanisms that enable photoreceptors to withstand light-induced oxidative stress.


Asunto(s)
Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Luz , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Canales de Calcio/metabolismo , Drosophila , Expresión Génica/fisiología , Neuroprotección/fisiología , Degeneración Retiniana/metabolismo
12.
BMC Genomics ; 18(1): 894, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162050

RESUMEN

BACKGROUND: Aging is associated with functional decline of neurons and increased incidence of both neurodegenerative and ocular disease. Photoreceptor neurons in Drosophila melanogaster provide a powerful model for studying the molecular changes involved in functional senescence of neurons since decreased visual behavior precedes retinal degeneration. Here, we sought to identify gene expression changes and the genomic features of differentially regulated genes in photoreceptors that contribute to visual senescence. RESULTS: To identify gene expression changes that could lead to visual senescence, we characterized the aging transcriptome of Drosophila sensory neurons highly enriched for photoreceptors. We profiled the nuclear transcriptome of genetically-labeled photoreceptors over a 40 day time course and identified increased expression of genes involved in stress and DNA damage response, and decreased expression of genes required for neuronal function. We further show that combinations of promoter motifs robustly identify age-regulated genes, suggesting that transcription factors are important in driving expression changes in aging photoreceptors. However, long, highly expressed and heavily spliced genes are also more likely to be downregulated with age, indicating that other mechanisms could contribute to expression changes at these genes. Lastly, we identify that circular RNAs (circRNAs) strongly increase during aging in photoreceptors. CONCLUSIONS: Overall, we identified changes in gene expression in aging Drosophila photoreceptors that could account for visual senescence. Further, we show that genomic features predict these age-related changes, suggesting potential mechanisms that could be targeted to slow the rate of age-associated visual decline.


Asunto(s)
Envejecimiento/genética , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Transcriptoma , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Regiones Promotoras Genéticas , ARN/metabolismo , Empalme del ARN , ARN Circular , Visión Ocular/genética
13.
Genes Dev ; 23(24): 2818-23, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20008933

RESUMEN

The histone acetyltransferase complex SAGA is well characterized as a coactivator complex in yeast. In this study of Drosophila SAGA (dSAGA), we describe three novel components that include an ortholog of Spt20, a potential ortholog of Sgf73/ATXN7, and a novel histone fold protein, SAF6 (SAGA factor-like TAF6). SAF6, which binds directly to TAF9, functions analogously in dSAGA to TAF6/TAF6L in the yeast and human SAGA complexes, respectively. Moreover, TAF6 in flies is restricted to TFIID. Mutations in saf6 disrupt SAGA-regulated gene expression without disrupting acetylated or ubiquitinated histone levels. Thus, SAF6 is essential for SAGA coactivator function independent of the enzymatic activities of the complex.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Acetiltransferasas/genética , Mutación/genética , Péptidos/aislamiento & purificación , Unión Proteica , Pliegue de Proteína
14.
J Biol Chem ; 290(3): 1332-47, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25451925

RESUMEN

Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.


Asunto(s)
Replicación del ADN , Proteínas de Drosophila/metabolismo , Proteínas del Huevo/metabolismo , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Ciclo Celular , Clonación Molecular , Cruzamientos Genéticos , Proteínas de Drosophila/genética , Proteínas del Huevo/genética , Femenino , Histonas/química , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fosforilación , Filogenia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes , Saccharomyces cerevisiae , Schizosaccharomyces , Homología de Secuencia de Aminoácido , Temperatura
15.
Nat Rev Genet ; 11(6): 426-37, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20421872

RESUMEN

The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.


Asunto(s)
Transducción de Señal/genética , Activación Transcripcional/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Redes Reguladoras de Genes/fisiología , Humanos , Modelos Biológicos , Fosfotransferasas/metabolismo , Fosfotransferasas/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología
16.
Mol Cell ; 29(6): 653-63, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18374642

RESUMEN

Recently, many of the enzymes responsible for the addition and removal of ubiquitin from the histones H2A and H2B have been identified and characterized. From these studies, it has become clear that H2A and H2B ubiquitination play critical roles in regulating many processes within the nucleus, including transcription initiation and elongation, silencing, and DNA repair. In this review, we present the enzymes involved in H2A and H2B ubiquitination and discuss new evidence that links histone ubiquitination to other chromatin modifications, which has provided a model for the role of H2B ubiquitination, in particular, in transcription initiation and elongation.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Animales , Arabidopsis/genética , Reparación del ADN , Humanos , Mamíferos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcripción Genética
17.
Sci Rep ; 13(1): 5105, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991154

RESUMEN

Studies in multiple organisms have shown that aging is accompanied by several molecular phenotypes that include dysregulation of chromatin. Since chromatin regulates DNA-based processes such as transcription, alterations in chromatin modifications could impact the transcriptome and function of aging cells. In flies, as in mammals, the aging eye undergoes changes in gene expression that correlate with declining visual function and increased risk of retinal degeneration. However, the causes of these transcriptome changes are poorly understood. Here, we profiled chromatin marks associated with active transcription in the aging Drosophila eye to understand how chromatin modulates transcriptional outputs. We found that both H3K4me3 and H3K36me3 globally decrease across all actively expressed genes with age. However, we found no correlation with changes in differential gene expression. Downregulation of the H3K36me3 methyltransferase Set2 in young photoreceptors revealed significant changes in splicing events that overlapped significantly with those observed in aging photoreceptors. These overlapping splicing events impacted multiple genes involved in phototransduction and neuronal function. Since proper splicing is essential for visual behavior, and because aging Drosophila undergo a decrease in visual function, our data suggest that H3K36me3 could play a role in maintaining visual function in the aging eye through regulating alternative splicing.


Asunto(s)
Proteínas de Drosophila , Histonas , Animales , Histonas/metabolismo , Drosophila/genética , Metilación , Cromatina/genética , Envejecimiento/genética , Mamíferos/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-37901602

RESUMEN

Aging is associated with a decline in visual function and increased prevalence of ocular disease, correlating with changes in the transcriptome and epigenome of cells in the eye. Here, we sought to identify the transcriptional mechanisms that are necessary to maintain photoreceptor viability and function during aging. To do this, we performed a targeted photoreceptor-specific RNAi screen in Drosophila to identify transcriptional regulators whose knockdown results in premature, age-dependent retinal degeneration. From an initial set of 155 RNAi lines each targeting a unique gene and spanning a diverse set of transcription factors, chromatin remodelers, and histone modifiers, we identified 18 high-confidence target genes whose decreased expression in adult photoreceptors leads to premature and progressive retinal degeneration. These 18 target genes were enriched for factors involved in the regulation of transcription initiation, pausing, and elongation, suggesting that these processes are essential for maintaining the health of aging photoreceptors. To identify the genes regulated by these factors, we profiled the photoreceptor transcriptome in a subset of lines. Strikingly, two of the 18 target genes, Spt5 and domino, show similar changes in gene expression to those observed in photoreceptors with advanced age. Together, our data suggest that dysregulation of factors involved in transcription initiation and elongation plays a key role in shaping the transcriptome of aging photoreceptors. Further, our findings indicate that the age-dependent changes in gene expression not only correlate but might also contribute to an increased risk of retinal degeneration.

19.
Redox Biol ; 63: 102723, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146512

RESUMEN

The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.


Asunto(s)
Cisteína , Proteoma , Animales , Cisteína/metabolismo , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/fisiología , Oxidación-Reducción , Drosophila/metabolismo , Fototransducción , Oxígeno
20.
EMBO J ; 27(2): 394-405, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18188155

RESUMEN

Nonstop, which has previously been shown to have homology to ubiquitin proteases, is required for proper termination of axons R1-R6 in the optic lobe of the developing Drosophila eye. Herein, we establish that Nonstop actually functions as an ubiquitin protease to control the levels of ubiquitinated histone H2B in flies. We further establish that Nonstop is the functional homolog of yeast Ubp8, and can substitute for Ubp8 function in yeast cells. In yeast, Ubp8 activity requires Sgf11. We show that in Drosophila, loss of Sgf11 function causes similar photoreceptor axon-targeting defects as loss of Nonstop. Ubp8 and Sgf11 are components of the yeast SAGA complex, suggesting that Nonstop function might be mediated through the Drosophila SAGA complex. Indeed, we find that Nonstop does associate with SAGA components in flies, and mutants in other SAGA subunits display nonstop phenotypes, indicating that SAGA complex is required for accurate axon guidance in the optic lobe. Candidate genes regulated by SAGA that may be required for correct axon targeting were identified by microarray analysis of gene expression in SAGA mutants.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endopeptidasas/metabolismo , Histonas/metabolismo , Neuronas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Endopeptidasas/genética , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Filogenia , Unión Proteica , Homología de Secuencia de Aminoácido , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA