Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2212338120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649421

RESUMEN

To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K+) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041-1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K+ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392-408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3-VU0546110-and showed that it completely blocked heterologous SLO3 currents and endogenous K+ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K+ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.


Asunto(s)
Infertilidad Masculina , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Masculino , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Potenciales de la Membrana/fisiología , Semen , Espermatozoides/fisiología
2.
Molecules ; 29(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893312

RESUMEN

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Asunto(s)
Bloqueadores de los Canales de Potasio , Relación Estructura-Actividad , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Xantina/química , Xantina/farmacología , Técnicas de Placa-Clamp , Células HEK293 , Estructura Molecular , Xantinas/química , Xantinas/farmacología
3.
Bioorg Med Chem ; 95: 117487, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812884

RESUMEN

Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.


Asunto(s)
Canales de Potasio , Talio , Animales , Cricetinae , Humanos , Ratones , Cricetulus , Células HEK293 , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/metabolismo , Convulsiones , Talio/metabolismo , Oxadiazoles/química , Oxadiazoles/metabolismo
4.
Mol Pharmacol ; 101(4): 236-245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35125346

RESUMEN

Loss-of-function (LOF) variants in the KV11.1 potassium channel cause long QT syndrome (LQTS). Most variants disrupt intracellular channel transport (trafficking) to the cell membrane. Since some channel inhibitors improve trafficking of KV11.1 variants, a high-throughput screening (HTS) assay to detect trafficking enhancement would be valuable to the identification of drug candidates. The thallium (Tl+) flux assay technique, widely used for drug screening, was optimized using human embryonic kidney (HEK-293) cells expressing a trafficking-deficient KV11.1 variant in 384-well plates. Assay quality was assessed using Z prime (Z') scores comparing vehicle to E-4031, a drug that increases KV11.1 membrane trafficking. The optimized assay was validated by immunoblot, electrophysiology experiments, and a pilot drug screen. The combination of: 1) truncating the trafficking-deficient variant KV11.1-G601S (KV11.1-G601S-G965*X) with the addition of 2) KV11.1 channel activator (VU0405601) and 3) cesium (Cs+) to the Tl+ flux assay buffer resulted in an outstanding Z' of 0.83. To validate the optimized trafficking assay, we carried out a pilot screen that identified three drugs (ibutilide, azaperone, and azelastine) that increase KV11.1 trafficking. The new assay exhibited 100% sensitivity and specificity. Immunoblot and voltage-clamp experiments confirmed that all three drugs identified by the new assay improved membrane trafficking of two additional LQTS KV11.1 variants. We report two new ways to increase target-specific activity in trafficking assays-genetic modification and channel activation-that yielded a novel HTS assay for identifying drugs that improve membrane expression of pathogenic KV11.1 variants. SIGNIFICANCE STATEMENT: This manuscript reports the development of a high-throughput assay (thallium flux) to identify drugs that can increase function in KV11.1 variants that are trafficking-deficient. Two key aspects that improved the resolving power of the assay and could be transferable to other ion channel trafficking-related assays include genetic modification and channel activation.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Síndrome de QT Prolongado , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Talio/metabolismo
5.
Mol Pharmacol ; 101(5): 357-370, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246480

RESUMEN

Heteromeric Kir4.1/Kir5.1 (KCNJ10/KCNJ16) inward rectifier potassium (Kir) channels play key roles in the brain and kidney, but pharmacological tools for probing their physiology and therapeutic potential have not been developed. Here, we report the discovery, in a high-throughput screening of 80,475 compounds, of the moderately potent and selective inhibitor VU0493690, which we selected for characterization and chemical optimization. VU0493690 concentration-dependently inhibits Kir4.1/5.1 with an IC50 of 0.96 µM and exhibits at least 10-fold selectivity over Kir4.1 and ten other Kir channels. Multidimensional chemical optimization of VU0493690 led to the development of VU6036720, the most potent (IC50 = 0.24 µM) and selective (>40-fold over Kir4.1) Kir4.1/5.1 inhibitor reported to date. Cell-attached patch single-channel recordings revealed that VU6036720 inhibits Kir4.1/5.1 activity through a reduction of channel open-state probability and single-channel current amplitude. Elevating extracellular potassium ion by 20 mM shifted the IC50 6.8-fold, suggesting that VU6036720 is a pore blocker that binds in the ion-conduction pathway. Mutation of the "rectification controller" asparagine 161 to glutamate (N161E), which is equivalent to small-molecule binding sites in other Kir channels, led to a strong reduction of inhibition by VU6036720. Renal clearance studies in mice failed to show a diuretic response that would be consistent with inhibition of Kir4.1/5.1 in the renal tubule. Drug metabolism and pharmacokinetics profiling revealed that high VU6036720 clearance and plasma protein binding may prevent target engagement in vivo. In conclusion, VU6036720 represents the current state-of-the-art Kir4.1/5.1 inhibitor that should be useful for probing the functions of Kir4.1/5.1 in vitro and ex vivo. SIGNIFICANCE STATEMENT: Heteromeric inward rectifier potassium (Kir) channels comprising Kir4.1 and Kir5.1 subunits play important roles in renal and neural physiology and may represent inhibitory drug targets for hypertension and edema. Herein, we employ high-throughput compound library screening, patch clamp electrophysiology, and medicinal chemistry to develop and characterize the first potent and specific in vitro inhibitor of Kir4.1/5.1, VU6036720, which provides proof-of-concept that drug-like inhibitors of this channel may be developed.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Ratones , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/metabolismo
6.
Bioorg Med Chem Lett ; 76: 129013, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36184030

RESUMEN

In this Letter we describe structure-activity relationship (SAR) studies conducted in five distinct regions of a new 2-amino-N-phenylacetamides series of Slack potassium channel inhibitors exemplified by recently disclosed high-throughput screening (HTS) hit VU0606170 (4). New analogs were screened in a thallium (Tl+) flux assay in HEK-293 cells stably expressing wild-type human (WT) Slack. Selected analogs were screened in Tl+ flux versus A934T Slack and other Slo family members Slick and Maxi-K and evaluated in whole-cell electrophysiology (EP) assays using an automated patch clamp system. Results revealed the series to have flat SAR with significant structural modifications resulting in a loss of Slack activity. More minor changes led to compounds with Slack activity and Slo family selectivity similar to the HTS hit.


Asunto(s)
Canales de Potasio , Talio , Humanos , Células HEK293 , Proteínas del Tejido Nervioso/metabolismo , Canales de potasio activados por Sodio , Relación Estructura-Actividad
7.
Anaesthesia ; 77(4): 398-404, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35226964

RESUMEN

Transferring critically ill patients between intensive care units (ICU) is often required in the UK, particularly during the COVID-19 pandemic. However, there is a paucity of data examining clinical outcomes following transfer of patients with COVID-19 and whether this strategy affects their acute physiology or outcome. We investigated all transfers of critically ill patients with COVID-19 between three different hospital ICUs, between March 2020 and March 2021. We focused on inter-hospital ICU transfers (those patients transferred between ICUs from different hospitals) and compared this cohort with intra-hospital ICU transfers (patients moved between different ICUs within the same hospital). A total of 507 transfers were assessed, of which 137 met the inclusion criteria. Forty-five patients underwent inter-hospital transfers compared with 92 intra-hospital transfers. There was no significant change in median compliance 6 h pre-transfer, immediately post-transfer and 24 h post-transfer in patients who underwent either intra-hospital or inter-hospital transfers. For inter-hospital transfers, there was an initial drop in median PaO2 /FI O2 ratio: from median (IQR [range]) 25.1 (17.8-33.7 [12.1-78.0]) kPa 6 h pre-transfer to 19.5 (14.6-28.9 [9.8-52.0]) kPa immediately post-transfer (p < 0.05). However, this had resolved at 24 h post-transfer: 25.4 (16.2-32.9 [9.4-51.9]) kPa. For intra-hospital transfers, there was no significant change in PaO2 /FI O2 ratio. We also found no meaningful difference in pH; PaCO2 ;, base excess; bicarbonate; or norepinephrine requirements. Our data demonstrate that patients with COVID-19 undergoing mechanical ventilation of the lungs may have short-term physiological deterioration when transferred between nearby hospitals but this resolves within 24 h. This finding is relevant to the UK critical care strategy in the face of unprecedented demand during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Enfermedad Crítica , Humanos , Unidades de Cuidados Intensivos , Pandemias , Transferencia de Pacientes , Estudios Retrospectivos
8.
Am J Physiol Cell Physiol ; 320(6): C1125-C1140, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826405

RESUMEN

Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.


Asunto(s)
Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Mol Pharmacol ; 100(6): 540-547, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503975

RESUMEN

G protein-gated inwardly rectifying K+ (GIRK) channels are critical mediators of excitability in the heart and brain. Enhanced GIRK-channel activity has been implicated in the pathogenesis of supraventricular arrhythmias, including atrial fibrillation. The lack of selective pharmacological tools has impeded efforts to investigate the therapeutic potential of cardiac GIRK-channel interventions in arrhythmias. Here, we characterize a recently identified GIRK-channel inhibitor, VU0468554. Using whole-cell electrophysiological approaches and primary cultures of sinoatrial nodal cells and hippocampal neurons, we show that VU0468554 more effectively inhibits the cardiac GIRK channel than the neuronal GIRK channel. Concentration-response experiments suggest that VU0468554 inhibits Gßγ-activated GIRK channels in noncompetitive and potentially uncompetitive fashion. In contrast, VU0468554 competitively inhibits GIRK-channel activation by ML297, a GIRK-channel activator containing the same chemical scaffold as VU0468554. In the isolated heart model, VU0468554 partially reversed carbachol-induced bradycardia in hearts from wild-type mice but not Girk4-/- mice. Collectively, these data suggest that VU0468554 represents a promising new pharmacological tool for targeting cardiac GIRK channels with therapeutic implications for relevant cardiac arrhythmias. SIGNIFICANCE STATEMENT: Although cardiac GIRK-channel inhibition shows promise for the treatment of supraventricular arrhythmias, the absence of subtype-selective channel inhibitors has hindered exploration into this therapeutic strategy. This study utilizes whole-cell patch-clamp electrophysiology to characterize the new GIRK-channel inhibitor VU0468554 in human embryonic kidney 293T cells and primary cultures. We report that VU0468554 exhibits a favorable pharmacodynamic profile for cardiac over neuronal GIRK channels and partially reverses GIRK-mediated bradycardia in the isolated mouse heart model.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción , Animales , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología
10.
J Biol Chem ; 295(21): 7289-7300, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32284327

RESUMEN

N-Acyl-phosphatidylethanolamine phospholipase D (NAPE-PLD) (EC 3.1.4.4) catalyzes the final step in the biosynthesis of N-acyl-ethanolamides. Reduced NAPE-PLD expression and activity may contribute to obesity and inflammation, but a lack of effective NAPE-PLD inhibitors has been a major obstacle to elucidating the role of NAPE-PLD and N-acyl-ethanolamide biosynthesis in these processes. The endogenous bile acid lithocholic acid (LCA) inhibits NAPE-PLD activity (with an IC50 of 68 µm), but LCA is also a highly potent ligand for TGR5 (EC50 0.52 µm). Recently, the first selective small-molecule inhibitor of NAPE-PLD, ARN19874, has been reported (having an IC50 of 34 µm). To identify more potent inhibitors of NAPE-PLD, here we used a quenched fluorescent NAPE analog, PED-A1, as a substrate for recombinant mouse Nape-pld to screen a panel of bile acids and a library of experimental compounds (the Spectrum Collection). Muricholic acids and several other bile acids inhibited Nape-pld with potency similar to that of LCA. We identified 14 potent Nape-pld inhibitors in the Spectrum Collection, with the two most potent (IC50 = ∼2 µm) being symmetrically substituted dichlorophenes, i.e. hexachlorophene and bithionol. Structure-activity relationship assays using additional substituted dichlorophenes identified key moieties needed for Nape-pld inhibition. Both hexachlorophene and bithionol exhibited significant selectivity for Nape-pld compared with nontarget lipase activities such as Streptomyces chromofuscus PLD or serum lipase. Both also effectively inhibited NAPE-PLD activity in cultured HEK293 cells. We conclude that symmetrically substituted dichlorophenes potently inhibit NAPE-PLD in cultured cells and have significant selectivity for NAPE-PLD versus other tissue-associated lipases.


Asunto(s)
Diclorofeno , Inhibidores Enzimáticos , Fosfolipasa D , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bitionol/química , Bitionol/farmacología , Diclorofeno/química , Diclorofeno/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Hexaclorofeno/química , Hexaclorofeno/farmacología , Humanos , Ratones , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Quinazolinas/química , Quinazolinas/farmacología , Streptomyces/enzimología , Sulfonamidas/química , Sulfonamidas/farmacología
11.
J Biol Chem ; 295(12): 3875-3890, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32047113

RESUMEN

Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively-coupled plasma-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore, and we observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Finally, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally-elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay, reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures.


Asunto(s)
Ionóforos/química , Manganeso/análisis , Animales , Calcimicina/química , Calcimicina/farmacología , Calcio/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fura-2/química , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ionomicina/química , Ionomicina/farmacología , Ionóforos/farmacología , Masculino , Manganeso/química , Manganeso/metabolismo , Manganeso/toxicidad , Espectrometría de Masas/métodos , Ratones
12.
Bioorg Med Chem Lett ; 29(23): 126681, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668424

RESUMEN

A set of novel Kv7.2/7.3 (KCNQ2/3) channel blockers was synthesized to address several liabilities of the known compounds XE991 (metabolic instability and CYP inhibition) and the clinical compound DMP 543 (acid instability, insolubility, and lipophilicity). Using the anthrone scaffold of the prior channel blockers, alternative heteroarylmethyl substituents were installed via enolate alkylation reactions. Incorporation of a pyridazine and a fluorinated pyridine gave an analog (compound 18, JDP-107) with a promising combination of potency (IC50 = 0.16 µM in a Kv7.2 thallium flux assay), efficacy in a Kv7.2/7.3 patch clamp assay, and drug-like properties.


Asunto(s)
Antracenos/farmacología , Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Trastornos Mentales/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/farmacología , Antracenos/síntesis química , Antracenos/química , Relación Dosis-Respuesta a Droga , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 29(6): 791-796, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718161

RESUMEN

The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.


Asunto(s)
Acetamidas/farmacología , Descubrimiento de Drogas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Pirazoles/farmacología , Tetrazoles/farmacología , Acetamidas/síntesis química , Acetamidas/química , Animales , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química
14.
Environ Manage ; 64(3): 245-257, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31359093

RESUMEN

A critical charge for science to inform environmental protection is to characterize the risks associated with climate change, to support development of appropriate responses. The nature of climate change, however, presents significant challenges that must be overcome to do so, including the need for integration and synthesis across the many disciplines that contain knowledge relevant for achieving environmental protection goals. This paper describes an interdisciplinary research framework organized around three "Science Challenges" that directly respond to the needs of environmental protection organizations. Broadly, these Science Challenges refer to the research needed to: inform actions to enhance resilience across a broad range of environmental and social stresses to environmental management endpoints; actions to limit GHG emissions and slow the underlying rate of climate change; and the transition to sustainability across the full spectrum of climate change impacts and solutions; all as situated within an overarching risk management perspective. These Challenges span all media and systems critical to effective environmental protection, highlighting the cross-cutting nature of climate change and the need to address its impacts across systems and places. While this framework uses EPA's programs as an illustrative example, the research directions articulated herein are broadly applicable across the spectrum of environmental protection organizations. Going forward, we recommend that climate-related research to inform environmental protection efforts should accelerate its evolution toward research that is inherently cross-media and cross-scale; explicitly considers the social dimensions of change; and focuses on designing solutions to the specific risks climate change poses to the environment and society.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Investigación Interdisciplinaria
15.
Angew Chem Int Ed Engl ; 58(43): 15421-15428, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31441199

RESUMEN

Photopharmacology relies on ligands that change their pharmacodynamics upon photoisomerization. Many of these ligands are azobenzenes that are thermodynamically more stable in their elongated trans-configuration. Often, they are biologically active in this form and lose activity upon irradiation and photoisomerization to their cis-isomer. Recently, cyclic azobenzenes, so-called diazocines, have emerged, which are thermodynamically more stable in their bent cis-form. Incorporation of these switches into a variety of photopharmaceuticals could convert dark-active ligands into dark-inactive ligands, which is preferred in most biological applications. This "pharmacological sign-inversion" is demonstrated for a photochromic blocker of voltage-gated potassium channels, termed CAL, and a photochromic opener of G protein-coupled inwardly rectifying potassium (GIRK) channels, termed CLOGO.


Asunto(s)
Compuestos Azo/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Luz , Bloqueadores de los Canales de Potasio/química , Potenciales de Acción/efectos de los fármacos , Compuestos Azo/farmacología , Ciclización , Diseño de Fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Humanos , Isomerismo , Lidocaína/química , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Termodinámica
16.
Mol Pharmacol ; 94(2): 926-937, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29895592

RESUMEN

The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.


Asunto(s)
Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Diuréticos/química , Electrólitos , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio de Rectificación Interna/genética , Ratas , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato
17.
Osteoporos Int ; 29(8): 1783-1791, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29713797

RESUMEN

Eggs contain bioactive compounds thought to benefit pediatric bone. This cross-sectional study shows a positive link between childhood egg intake and radius cortical bone. If randomized trials confirm our findings, incorporating eggs into children's diets could have a significant impact in preventing childhood fractures and reducing the risk of osteoporosis. INTRODUCTION: This study examined the relationships between egg consumption and cortical bone in children. METHODS: The cross-sectional study design included 294 9-13-year-old black and white males and females. Three-day diet records determined daily egg consumption. Peripheral quantitative computed tomography measured radius and tibia cortical bone. Body composition and biomarkers of bone turnover were assessed using dual-energy X-ray absorptiometry and ELISA, respectively. RESULTS: Egg intake was positively correlated with radius and tibia cortical bone mineral content (Ct.BMC), total bone area, cortical area, cortical thickness, periosteal circumference, and polar strength strain index in unadjusted models (r = 0.144-0.224, all P < 0.050). After adjusting for differences in race, sex, maturation, fat-free soft tissue mass (FFST), and protein intakes, tibia relationships were nullified; however, egg intake remained positively correlated with radius Ct.BMC (r = 0.138, P = 0.031). Egg intake positively correlated with total body bone mineral density, BMC, and bone area in the unadjusted models only (r = 0.119-0.224; all P < 0.050). After adjusting for covariates, egg intake was a positive predictor of radius FFST (ß = 0.113, P < 0.050) and FFST was a positive predictor of Ct.BMC (ß = 0.556, P < 0.050) in path analyses. There was a direct influence of egg on radius Ct.BMC (ß = 0.099, P = 0.035), even after adjusting for the mediator, FFST (ß = 0.137, P = 0.020). Egg intake was positively correlated with osteocalcin in both the unadjusted (P = 0.005) and adjusted (P = 0.049) models. CONCLUSION: If the positive influence of eggs on Ct.BMC observed in this study is confirmed through future randomized controlled trials, whole eggs may represent a viable strategy to promote pediatric bone development and prevent fractures.


Asunto(s)
Densidad Ósea/fisiología , Fenómenos Fisiológicos Nutricionales Infantiles/fisiología , Hueso Cortical/fisiología , Huevos/estadística & datos numéricos , Absorciometría de Fotón , Adolescente , Antropometría/métodos , Biomarcadores/sangre , Desarrollo Óseo/fisiología , Remodelación Ósea/fisiología , Niño , Estudios Transversales , Dieta/estadística & datos numéricos , Conducta Alimentaria/fisiología , Femenino , Humanos , Masculino , Radio (Anatomía)/fisiología , Maduración Sexual/fisiología , Tibia/fisiología , Tomografía Computarizada por Rayos X/métodos
18.
Osteoporos Int ; 29(9): 1933-1948, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29740667

RESUMEN

A summary of systematic reviews and meta-analyses addressing the benefits and risks of dietary protein intakes for bone health in adults suggests that dietary protein levels even above the current RDA may be beneficial in reducing bone loss and hip fracture risk, provided calcium intakes are adequate. Several systematic reviews and meta-analyses have addressed the benefits and risks of dietary protein intakes for bone health in adults. This narrative review of the literature summarizes and synthesizes recent systematic reviews and meta-analyses and highlights key messages. Adequate supplies of dietary protein are required for optimal bone growth and maintenance of healthy bone. Variation in protein intakes within the "normal" range accounts for 2-4% of BMD variance in adults. In older people with osteoporosis, higher protein intake (≥ 0.8-g/kg body weight/day, i.e., above the current RDA) is associated with higher BMD, a slower rate of bone loss, and reduced risk of hip fracture, provided that dietary calcium intakes are adequate. Intervention with dietary protein supplements attenuate age-related BMD decrease and reduce bone turnover marker levels, together with an increase in IGF-I and a decrease in PTH. There is no evidence that diet-derived acid load is deleterious for bone health. Thus, insufficient dietary protein intakes may be a more severe problem than protein excess in the elderly. Long-term, well-controlled randomized trials are required to further assess the influence of dietary protein intakes on fracture risk.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Osteoporosis/prevención & control , Equilibrio Ácido-Base/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Calcio de la Dieta/administración & dosificación , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/farmacología , Humanos , Fracturas Osteoporóticas/prevención & control , Medición de Riesgo/métodos
19.
Chemistry ; 24(36): 8985-8988, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29679472

RESUMEN

This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated porcine liver esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays.


Asunto(s)
Esterasas/metabolismo , Hígado/enzimología , Rodaminas/metabolismo , Animales , Esterasas/química , Esterasas/genética , Células HEK293 , Humanos , Microscopía Confocal , Rodaminas/química , Espectrometría de Fluorescencia , Porcinos
20.
Org Biomol Chem ; 16(31): 5575-5579, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30051127

RESUMEN

Thallium (Tl+) flux assays enable imaging of potassium (K+) channel activity in cells and tissues by exploiting the permeability of K+ channels to Tl+ coupled with a fluorescent Tl+ sensitive dye. Common Tl+ sensing dyes utilize fluorescein as the fluorophore though fluorescein exhibits certain undesirable properties in these assays including short excitation wavelengths and pH sensitivity. To overcome these drawbacks, the replacement of fluorescein with rhodols was investigated. A library of 13 rhodol-based Tl+ sensors was synthesized and their properties and performance in Tl+ flux assays evaluated. The dimethyl rhodol Tl+ sensor emerged as the best of the series and performed comparably to fluorescein-based sensors while demonstrating greater pH tolerance in the physiological range and excitation and emission spectra 30 nm red-shifted from fluorescein.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Canales de Potasio/metabolismo , Talio/análisis , Xantonas/química , Células HEK293 , Humanos , Metilación , Microscopía Confocal/métodos , Espectrometría de Fluorescencia/métodos , Talio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA