Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(14): 6574-6580, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432064

RESUMEN

Triggered, indistinguishable single photons are crucial in various quantum photonic implementations. Here, we realize a novel n+-i-n++ diode structure embedding semiconductor quantum dots: the gated device enables spectral tuning of the transitions and deterministic control of the charged states. Blinking-free single-photon emission and high two-photon indistinguishability are observed. The line width's temporal evolution is investigated across over 6 orders of magnitude time scales, combining photon-correlation Fourier spectroscopy, high-resolution photoluminescence spectroscopy, and two-photon interference (visibility of VTPI,2ns = (85.8 ± 2.2)% and VTPI,9ns = (78.3 ± 3.0)%). Most of the dots show no spectral broadening beyond ∼9 ns time scales, and the photons' line width ((420 ± 30) MHz) deviates from the Fourier-transform limit by a factor of 1.68. The combined techniques verify that most dephasing mechanisms occur at time scales ≤2 ns, despite their modest impact. The presence of n-doping implies higher carrier mobility, enhancing the device's appeal for high-speed tunable, high-performance quantum light sources.

2.
Euro Surveill ; 27(43)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305336

RESUMEN

BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Importadas , Humanos , SARS-CoV-2/genética , Viaje , Enfermedades Transmisibles Importadas/epidemiología , COVID-19/epidemiología , Filogenia , Trazado de Contacto , Alemania/epidemiología , Genómica
3.
Respir Res ; 22(1): 292, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34775965

RESUMEN

BACKGROUND: Pursed-lips breathing (PLB) is a technique to attenuate small airway collapse by regulating the expiratory flow. During mandatory ventilation, flow-controlled expiration (FLEX), which mimics the expiratory flow course of PLB utilizing a digital system for measurement and control, was shown to exert lung protective effects. However, PLB requires a patient's participation and coordinated muscular effort and FLEX requires a complex technical setup. Here, we present an adjustable flow regulator to mimic PLB and FLEX, respectively, without the need of a patient's participation, or a complex technical device. METHODS: Our study consisted of two parts: First, in a lung model which was ventilated with standard settings (tidal volume 500 ml, respiratory rate 12 min-1, positive end-expiratory pressure (PEEP) 5 cmH2O), the possible reduction of the maximal expiratory flow by utilizing the flow regulator was assessed. Second, with spontaneously breathing healthy volunteers, the short-term effects of medium and strong expiratory flow reduction on airway pressure, the change of end-expiratory lung volume (EELV), and breathing discomfort was investigated. RESULTS: In the lung model experiments, expiratory flow could be reduced from - 899 ± 9 ml·s-1 down to - 328 ± 25 ml·s-1. Thereby, inspiratory variables and PEEP were unaffected. In the volunteers, the maximal expiratory flow of - 574 ± 131 ml·s-1 under baseline conditions was reduced to - 395 ± 71 ml·s-1 for medium flow regulation and to - 266 ± 58 ml·s-1 for strong flow regulation, respectively (p < 0.001). Accordingly, mean airway pressure increased from 0.6 ± 0.1 cmH2O to 2.9 ± 0.4 cmH2O with medium flow regulation and to 5.4 ± 2.4 cmH2O with strong flow regulation, respectively (p < 0.001). The EELV increased from baseline by 31 ± 458 ml for medium flow regulation and 320 ± 681 ml for strong flow regulation (p = 0.033). The participants rated breathing with the flow regulator as moderately uncomfortable, but none rated breathing with the flow regulator as intolerable. CONCLUSIONS: The flow regulator represents an adjustable device for application of a self-regulated expiratory resistive load, representing an alternative for PLB and FLEX. Future applications in spontaneously breathing patients and patients with mandatory ventilation alike may reveal potential benefits. TRIAL REGISTRATION: DRKS00015296, registered on 20th August, 2018; URL: https://www.drks.de/drks_web/setLocale_EN.do .


Asunto(s)
Mediciones del Volumen Pulmonar/métodos , Pulmón/fisiología , Modelos Biológicos , Respiración con Presión Positiva/métodos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Volumen de Ventilación Pulmonar/fisiología , Adolescente , Adulto , Estudios Cruzados , Espiración , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Adulto Joven
4.
J Clin Monit Comput ; 35(2): 343-354, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32067148

RESUMEN

Anesthesia care providers and anesthesia decision support tools use mathematical pharmacokinetic models to control delivery and especially removal of anesthetics from the patient's body. However, these models are not able to reflect alterations in pharmacokinetics of volatile anesthetics caused by obesity. The primary aim of this study was to refine those models for obese patients. To investigate the effects of obesity on the elimination of desflurane, isoflurane and sevoflurane for various anesthesia durations, the Gas Man® computer simulation software was used. Four different models simulating patients with weights of 70 kg, 100 kg, 125 kg and 150 kg were constructed by increasing fat weight to the standard 70 kg model. For each modelled patient condition, the vaporizer was set to reach quickly and then maintain an alveolar concentration of 1.0 minimum alveolar concentration (MAC). Subsequently, the circuit was switched to an open (non-rebreathing) circuit model, the inspiratory anesthetic concentration was set to 0 and the time to the anesthetic decrements by 67% (awakening times), 90% (recovery times) and 95% (resolution times) in the vessel-rich tissue compartment including highly perfused tissue of the central nervous system were determined. Awakening times did not differ greatly between the simulation models. After volatile anesthesia with sevoflurane and isoflurane, awakening times were lower in the more obese simulation models. With increasing obesity, recovery and resolution times were higher. The additional adipose tissue in obese simulation models did not prolong awakening times and thus may act more like a sink for volatile anesthetics. The results of these simulations should be validated by comparing the elimination of volatile anesthetics in obese patients with data from our simulation models.


Asunto(s)
Anestésicos por Inhalación , Anestésicos , Isoflurano , Éteres Metílicos , Anestesia por Inhalación , Simulación por Computador , Desflurano , Humanos , Masculino , Obesidad
5.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071318

RESUMEN

Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Receptores de Tirotropina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Catepsina K/deficiencia , Catepsina K/genética , Catepsina K/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Tiroglobulina/metabolismo , Glándula Tiroides/citología , Hormonas Tiroideas/metabolismo , Tirotropina/sangre , Tirotropina/metabolismo
6.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466458

RESUMEN

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Asunto(s)
Autofagia/fisiología , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hipófisis/metabolismo
7.
Crit Care Med ; 48(3): e241-e248, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31856000

RESUMEN

OBJECTIVES: Lung-protective ventilation for acute respiratory distress syndrome aims for providing sufficient oxygenation and carbon dioxide clearance, while limiting the harmful effects of mechanical ventilation. "Flow-controlled ventilation", providing a constant expiratory flow, has been suggested as a new lung-protective ventilation strategy. The aim of this study was to test whether flow-controlled ventilation attenuates lung injury in an animal model of acute respiratory distress syndrome. DESIGN: Preclinical, randomized controlled animal study. SETTING: Animal research facility. SUBJECTS: Nineteen German landrace hybrid pigs. INTERVENTION: Flow-controlled ventilation (intervention group) or volume-controlled ventilation (control group) with identical tidal volume (7 mL/kg) and positive end-expiratory pressure (9 cm H2O) after inducing acute respiratory distress syndrome with oleic acid. MEASUREMENTS AND MAIN RESULTS: PaO2 and PaCO2, minute volume, tracheal pressure, lung aeration measured via CT, alveolar wall thickness, cell infiltration, and surfactant protein A concentration in bronchoalveolar lavage fluid. Five pigs were excluded leaving n equals to 7 for each group. Compared with control, flow-controlled ventilation elevated PaO2 (154 ± 21 vs 105 ± 9 torr; 20.5 ± 2.8 vs 14.0 ± 1.2 kPa; p = 0.035) and achieved comparable PaCO2 (57 ± 3 vs 54 ± 1 torr; 7.6 ± 0.4 vs 7.1 ± 0.1 kPa; p = 0.37) with a lower minute volume (6.4 ± 0.5 vs 8.7 ± 0.4 L/min; p < 0.001). Inspiratory plateau pressure was comparable in both groups (31 ± 2 vs 34 ± 2 cm H2O; p = 0.16). Flow-controlled ventilation increased normally aerated (24% ± 4% vs 10% ± 2%; p = 0.004) and decreased nonaerated lung volume (23% ± 6% vs 38% ± 5%; p = 0.033) in the dependent lung region. Alveolar walls were thinner (5.5 ± 0.1 vs 7.8 ± 0.2 µm; p < 0.0001), cell infiltration was lower (20 ± 2 vs 32 ± 2 n/field; p < 0.0001), and normalized surfactant protein A concentration was higher with flow-controlled ventilation (1.1 ± 0.04 vs 1.0 ± 0.03; p = 0.039). CONCLUSIONS: Flow-controlled ventilation enhances lung aeration in the dependent lung region and consequently improves gas exchange and attenuates lung injury. Control of the expiratory flow may provide a novel option for lung-protective ventilation.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Modelos Animales de Enfermedad , Distribución Aleatoria , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Porcinos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
8.
Cell Mol Neurobiol ; 40(5): 695-710, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31808010

RESUMEN

Cathepsin K deficiency in male mice (Ctsk-/-) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk-/- mice. Serum levels of thyroid stimulating hormone, brain concentrations of free TH, and deiodinase 2 (Dio2) activity in brain parenchyma as well as cerebellar development were comparable in Ctsk-/- and WT animals, suggesting regular thyroid states and TH metabolism. Despite unaltered transcript levels, protein expression of two TH transporters was enhanced in specific brain regions in Ctsk-/- mice, suggesting altered TH supply to these regions. Thyrotropin releasing hormone (Trh) mRNA levels were enhanced threefold in the hippocampus of Ctsk-/- mice. In the striatum of Ctsk-/- mice the mRNA for Dio2 and hairless were approximately 1.3-fold enhanced, while mRNA levels for monocarboxylate transporter 8 and Trh were reduced to 60% and 40%, respectively, pointing to altered striatal physiology. We conclude that the role of cathepsin K in the thyroid gland is not directly associated with its function in the central nervous system (CNS) of mice. Future studies will show whether the brain region-specific alterations in Trh mRNA may eventually result in altered neuroprotection that could explain the neurobehavioral defects of Ctsk-/- mice.


Asunto(s)
Catepsina K/fisiología , Sistema Nervioso Central/enzimología , Glándula Tiroides/enzimología , Animales , Catepsina K/genética , Cerebelo/enzimología , Cerebelo/crecimiento & desarrollo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/análisis , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
9.
Acta Anaesthesiol Scand ; 64(4): 481-488, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31828755

RESUMEN

BACKGROUND: Flow-controlled ventilation (FCV) is a new ventilation mode that provides constant inspiratory and expiratory flow. FCV was shown to improve gas exchange and lung recruitment in porcine models of healthy and injured ventilated lungs. The primary aim of our study was to verify the influences of FCV on gas exchange, respiratory mechanics and haemodynamic variables in mechanically ventilated lung-healthy patients. METHODS: After obtaining ethical approval and informed consent, we measured arterial blood gases, respiratory and haemodynamic variables during volume-controlled ventilation (VCV) and FCV in 20 consecutive patients before they underwent abdominal surgery. After baseline (BL) ventilation, patients were randomly assigned to either BL-VCV-FCV or BL-FCV-VCV. Thereby, BL ventilation settings were kept, except for the ventilation mode-related differences (FCV is supposed to be used with an I:E ratio of 1:1). RESULTS: Compared to BL and VCV, PaO2 was higher [PaO2 : FCV: 38.2 (7.1), BL ventilation: 35.0 (5.8), VCV: 35.2 (7.0) kPa, P < .001] and PaCO2 lower [PaCO2 : FCV: 4.8 (0.5), BL ventilation: 5.1 (0.5), VCV: 5.1 (0.5) kPa, P < .001] during FCV. With comparable plateau pressure [BL: 14.9 (1.9), VCV: 15.3 (1.6), FCV: 15.2 (1.5) cm H2 O), P = .185], tracheal mean pressure was higher during FCV [BL: 10.2 (1.1), VCV: 10.4 (0.7), FCV: 11.5 (1.0) cm H2 O, P < .001]. Haemodynamic variables did not differ between ventilation phases. CONCLUSION: Flow-controlled ventilation improves oxygenation and carbon dioxide elimination within a short time, compared to VCV with identical tidal volume, inspiratory plateau pressure and end-expiratory pressure.


Asunto(s)
Pulmón/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Respiración Artificial/métodos , Anciano , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen de Ventilación Pulmonar
10.
BMC Anesthesiol ; 20(1): 24, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992213

RESUMEN

BACKGROUND: In obese patients, high closing capacity and low functional residual capacity increase the risk for expiratory alveolar collapse. Constant expiratory flow, as provided by the new flow-controlled ventilation (FCV) mode, was shown to improve lung recruitment. We hypothesized that lung aeration and respiratory mechanics improve in obese patients during FCV. METHODS: We compared FCV and volume-controlled (VCV) ventilation in 23 obese patients in a randomized crossover setting. Starting with baseline measurements, ventilation settings were kept identical except for the ventilation mode related differences (VCV: inspiration to expiration ratio 1:2 with passive expiration, FCV: inspiration to expiration ratio 1:1 with active, linearized expiration). Primary endpoint of the study was the change of end-expiratory lung volume compared to baseline ventilation. Secondary endpoints were the change of mean lung volume, respiratory mechanics and hemodynamic variables. RESULTS: The loss of end-expiratory lung volume and mean lung volume compared to baseline was lower during FCV compared to VCV (end-expiratory lung volume: FCV, - 126 ± 207 ml; VCV, - 316 ± 254 ml; p < 0.001, mean lung volume: FCV, - 108.2 ± 198.6 ml; VCV, - 315.8 ± 252.1 ml; p < 0.001) and at comparable plateau pressure (baseline, 19.6 ± 3.7; VCV, 20.2 ± 3.4; FCV, 20.2 ± 3.8 cmH2O; p = 0.441), mean tracheal pressure was higher (baseline, 13.1 ± 1.1; VCV, 12.9 ± 1.2; FCV, 14.8 ± 2.2 cmH2O; p < 0.001). All other respiratory and hemodynamic variables were comparable between the ventilation modes. CONCLUSIONS: This study demonstrates that, compared to VCV, FCV improves regional ventilation distribution of the lung at comparable PEEP, tidal volume, PPlat and ventilation frequency. The increase in end-expiratory lung volume during FCV was probably caused by the increased mean tracheal pressure which can be attributed to the linearized expiratory pressure decline. TRIAL REGISTRATION: German Clinical Trials Register: DRKS00014925. Registered 12 July 2018.


Asunto(s)
Pulmón/fisiopatología , Obesidad/fisiopatología , Respiración Artificial/métodos , Mecánica Respiratoria/fisiología , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
BMC Anesthesiol ; 20(1): 42, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32079526

RESUMEN

BACKGROUND: The application of positive end-expiratory pressure (PEEP) may reduce dynamic strain during mechanical ventilation. Although numerous approaches for PEEP titration have been proposed, there is no accepted strategy for titrating optimal PEEP. By analyzing intratidal compliance profiles, PEEP may be individually titrated for patients. METHODS: After obtaining informed consent, 60 consecutive patients undergoing general anesthesia were randomly allocated to mechanical ventilation with PEEP 5 cmH2O (control group) or PEEP individually titrated, guided by an analysis of the intratidal compliance profile (intervention group). The primary endpoint was the frequency of each nonlinear intratidal compliance (CRS) profile of the respiratory system (horizontal, increasing, decreasing, and mixed). The secondary endpoints measured were respiratory mechanics, hemodynamic variables, and regional ventilation, which was assessed via electrical impedance tomography. RESULTS: The frequencies of the CRS profiles were comparable between the groups. Besides PEEP [control: 5.0 (0.0), intervention: 5.8 (1.1) cmH2O, p < 0.001], the respiratory and hemodynamic variables were comparable between the two groups. The compliance profile analysis showed no significant differences between the two groups. The loss of ventral and dorsal regional ventilation was higher in the control [ventral: 41.0 (16.3)%; dorsal: 25.9 (13.8)%] than in the intervention group [ventral: 29.3 (17.6)%; dorsal: 16.4 (12.7)%; p (ventral) = 0.039, p (dorsal) = 0.028]. CONCLUSIONS: Unfavorable compliance profiles indicating tidal derecruitment were found less often than in earlier studies. Individualized PEEP titration resulted in slightly higher PEEP. A slight global increase in aeration associated with this was indicated by regional gain and loss analysis. Differences in dorsal to ventral ventilation distribution were not found. TRIAL REGISTRATION: This clinical trial was registered at the German Register for Clinical Trials (DRKS00008924) on August 10, 2015.


Asunto(s)
Pulmón/fisiología , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología , Impedancia Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen de Ventilación Pulmonar/fisiología
12.
Eur J Anaesthesiol ; 36(12): 963-971, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31644514

RESUMEN

BACKGROUND: Good visibility is essential for successful laryngeal surgery. A Tritube with outer diameter 4.4 mm, combined with flow-controlled ventilation (FCV), enables ventilation by active expiration with a sealed trachea and may improve laryngeal visibility. OBJECTIVES: We hypothesised that a Tritube with FCV would provide better laryngeal visibility and surgical conditions for laryngeal surgery than a conventional microlaryngeal tube (MLT) with volume-controlled ventilation (VCV). DESIGN: Randomised, controlled trial. SETTING: University Medical Centre. PATIENTS: A total of 55 consecutive patients (>18 years) undergoing elective laryngeal surgery were assessed for participation, providing 40 evaluable data sets with 20 per group. INTERVENTIONS: Random allocation to intubation with Tritube and ventilation with FCV (Tritube-FCV group) or intubation with MLT 6.0 and ventilation with VCV (MLT-VCV) as control. Tidal volumes of 7 ml kg predicted body weight, and positive end-expiratory pressure of 7 cmH2O were standardised between groups. MAIN OUTCOME MEASURES: Primary endpoint was the tube-related concealment of laryngeal structures, measured on videolaryngoscopic photographs by appropriate software. Secondary endpoints were surgical conditions (categorical four-point rating scale), respiratory variables and change of end-expiratory lung volume from atmospheric airway pressure to ventilation with positive end-expiratory pressure. Data are presented as median [IQR]. RESULTS: There was less concealment of laryngeal structures with the Tritube than with the MLT; 7 [6 to 9] vs. 22 [18 to 27] %, (P < 0.001). Surgical conditions were rated comparably (P = 0.06). A subgroup of residents in training perceived surgical conditions to be better with the Tritube compared with the MLT (P = 0.006). Respiratory system compliance with the Tritube was higher at 61 [52 to 71] vs. 46 [41 to 51] ml cmH2O (P < 0.001), plateau pressure was lower at 14 [13 to 15] vs. 17 [16 to 18] cmH2O (P < 0.001), and change of end-expiratory lung volume was higher at 681 [463 to 849] vs. 414 [194 to 604] ml, (P = 0.023) for Tritube-FCV compared with MLT-VCV. CONCLUSION: During laryngeal surgery a Tritube improves visibility of the surgical site but not surgical conditions when compared with a MLT 6.0. FCV improves lung aeration and respiratory system compliance compared with VCV. TRIAL REGISTRY NUMBER: DRKS00013097.


Asunto(s)
Procedimientos Quirúrgicos Electivos/instrumentación , Glotis/diagnóstico por imagen , Enfermedades de la Laringe/cirugía , Máscaras Laríngeas , Respiración con Presión Positiva/instrumentación , Anciano , Anestesia General , Anestesia Intravenosa , Femenino , Glotis/cirugía , Humanos , Masculino , Persona de Mediana Edad , Volumen de Ventilación Pulmonar , Resultado del Tratamiento
13.
Eur J Anaesthesiol ; 36(5): 327-334, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30730422

RESUMEN

BACKGROUND: Flow-controlled ventilation (FCV) is a new mechanical ventilation mode that maintains constant flow during inspiration and expiration with standard tidal volumes via cuffed narrow-bore endotracheal tubes. Originating in manually operated 'expiratory ventilation assistance', FCV extends this technique by automatic control of airway flow, monitoring of intratracheal pressure and control of peak inspiratory pressure and end-expiratory pressure. FCV has not yet been described in a clinical study. OBJECTIVE: The aim of this study was to provide an initial assessment of FCV in mechanically ventilated patients undergoing ear, nose and throat surgery and evaluate its potential for future use. DESIGN: An observational study. SETTING: Two German academic medical centres from 24 November 2017 to 09 January 2018. PATIENTS: Consecutive patients (≥ 18 years) scheduled for elective ear, nose and throat surgery. Exclusion criteria were planned laser surgery, intended fibreoptic awake intubation, emergency procedures, increased risk of aspiration, American Society of Anesthesiologists (ASA) physical status more than III and chronic obstructive pulmonary disease classified as GOLD stage more than II. INTERVENTION: Peri-operative use of FCV provided by a new type of ventilator (Evone) via a narrow-bore endotracheal tube (Tritube). MAIN OUTCOME MEASURES: Minute volume, respiratory rate, intratidal tracheal pressure amplitude (Δp) and end-tidal CO2 (PetCO2) were recorded every 5 min. All adverse events were noted. Data are presented as median [IQR]. RESULTS: Sixteen patients provided 15 evaluable data sets. A minute volume of 5.0 [4.4 to 6.4] l min and a respiratory rate of 9 [8 to 11] min generated a PetCO2 of 4.9 [4.8 to 5.0] kPa. Δp was 10 [9 to 12] cmH2O. Five adverse events were recorded: a tube obstruction due to airway secretions and four tube dislocations (two attributed to coughing, two not study-related). CONCLUSION: FCV achieves adequate PetCO2 levels with minute volume and Δp in the normal range. Tritube's high flow resistance may increase the likelihood of tube dislocations if the patient coughs. Although further evaluation is necessary, FCV provides a new option for short-term mechanical ventilation. The successful operation of FCV with narrow-bore tubes contributes to the armamentarium for airway management. TRIAL REGISTRATION: DRKS00013312.


Asunto(s)
Intubación Intratraqueal/métodos , Procedimientos Quirúrgicos Otorrinolaringológicos/efectos adversos , Respiración Artificial/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/instrumentación , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial/efectos adversos , Respiración Artificial/instrumentación , Volumen de Ventilación Pulmonar , Ventiladores Mecánicos , Adulto Joven
14.
Bioinformatics ; 33(16): 2580-2582, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28379341

RESUMEN

MOTIVATION: BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). AVAILABILITY AND IMPLEMENTATION: The software is freely available at github.com/BioContainers/. CONTACT: yperez@ebi.ac.uk.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Genómica/métodos , Metabolómica/métodos , Proteómica/métodos
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 560-568, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932059

RESUMEN

Pulmonary fibrosis (PF) is a chronic progressive lung disease without effective medical treatment options leading to respiratory failure and death within 3-5years of diagnosis. The pathological process of PF is driven by aberrant wound-healing involving fibroblasts and myofibroblasts differentiated by secreted profibrotic transforming growth factor ß (TGF-ß1). Classical transient receptor potential 6 (TRPC6), a Na+- and Ca2+-permeable cation channel, is able to promote myofibroblast conversion of primary rat cardiac and human dermal fibroblasts and TRPC6-deficiency impaired wound healing after injury. To study a potential role of TRPC6 in the development of PF we analyzed lung function, gene and protein expression in wild-type (WT) and TRPC6-deficient (TRPC6-/-) lungs utilizing a bleomycin-induced PF-model. Fibrotic WT-mice showed a significant higher death rate while bleomycin-treated TRPC6-deficient mice were partly protected from fibrosis as a consequence of a lower production of collagen and an almost normal function of the respiratory system (reduced resistance and elastance compared to fibrotic WT-mice). On a molecular level TGF-ß1 induced TRPC6 up-regulation, increased Ca2+ influx and nuclear NFAT localization in WT primary murine lung fibroblasts (PMLFs) resulting in higher stress fiber formation and accelerated contraction rates as compared to treated TRPC6-deficient fibroblasts. Therefore, we conclude that TRPC6 is an important determinant for TGF-ß1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.


Asunto(s)
Pulmón/patología , Miofibroblastos/patología , Fibrosis Pulmonar/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Diferenciación Celular , Transdiferenciación Celular , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Eliminación de Gen , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
16.
Sensors (Basel) ; 18(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271905

RESUMEN

Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.


Asunto(s)
Glycine max , Clorofila , Fluorescencia , Herbicidas , Control de Malezas
17.
Nat Commun ; 15(1): 4518, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806491

RESUMEN

The semiconductors industry has put its eyes on two-dimensional (2D) materials produced by chemical vapour deposition (CVD) because they can be grown at the wafer level with small thickness fluctuations, which is necessary to build electronic devices and circuits. However, CVD-grown 2D materials can contain significant amounts of lattice distortions, which degrades the performance at the device level and increases device-to-device variability. Here we statistically analyse the quality of commercially available CVD-grown hexagonal boron nitride (h-BN) from the most popular suppliers. h-BN is of strategic importance because it is one of the few insulating 2D materials, and can be used as anti-scattering substrate and gate dielectric. We find that the leakage current and electrical homogeneity of all commercially available CVD h-BN samples are significantly worse than those of mechanically exfoliated h-BN of similar thickness. Moreover, in most cases the properties of the CVD h-BN samples analysed don't match the technical specifications given by the suppliers, and the sample-to-sample variability is unsuitable for the reproducible fabrication of capacitors, transistors or memristors in different batches. In the short term, suppliers should try to provide accurate sample specifications matching the properties of the commercialized materials, and researchers should keep such inaccuracies in mind; and in the middle term suppliers should try to reduce the density of defects to enable the fabrication of high-performance devices with high reliability and reproducibility.

18.
Nat Commun ; 15(1): 2430, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499534

RESUMEN

Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.

19.
ACS Appl Mater Interfaces ; 15(17): 21602-21608, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083396

RESUMEN

Conductive atomic force microscopy (CAFM) is a powerful technique to investigate electrical and mechanical properties of materials and devices at the nanoscale. However, its main challenge is the reliability of the probe tips and their interaction with the samples. The most common probe tips used in CAFM studies are made of Si coated with a thin (∼20 nm) film of Pt or Pt-rich alloys (such as Pt/Ir), but this can degrade fast due to high current densities (>102A/cm2) and mechanical frictions. Si tips coated with doped diamond and solid doped diamond tips are more durable, but they are significantly more expensive and their high stiffness often damages the surface of most samples. One growing alternative is to use solid Pt tips, which have an intermediate price and are expected to be more durable than metal-coated silicon tips. However, a thorough characterization of the performance of solid Pt probes for CAFM research has never been reported. In this article, we characterize the performance of solid Pt probes for nanoelectronics research by performing various types of experiments and compare them to Pt/Ir-coated Si probes. Our results indicate that solid Pt probes exhibit a lateral resolution that is very similar to that of Pt/Ir-coated Si probes but with the big advantage of a much longer lifetime. Moreover, the probe-to-probe deviation of the electrical data collected is small. The use of solid Pt probes can help researchers to enhance the reliability of their CAFM experiments.

20.
ACS Appl Mater Interfaces ; 15(48): 56365-56374, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988286

RESUMEN

Conductive atomic force microscopy (CAFM) has become the preferred tool of many companies and academics to analyze the electronic properties of materials and devices at the nanoscale. This technique scans the surface of a sample using an ultrasharp conductive nanoprobe so that the contact area between them is very small (<100 nm2) and it can measure the properties of the sample with a very high lateral resolution. However, measuring relatively low currents (∼1 nA) in such small areas produces high current densities (∼1000 A/cm2), which almost always results in fast nanoprobe degradation. That is not only expensive but also endangers the reliability of the data collected because detecting which data sets are affected by tip degradation can be complex. Here, we show an inexpensive long-sought solution for this problem by using a current limitation system. We test its performance by measuring the tunneling current across a reference ultrathin dielectric when applying ramped voltage stresses at hundreds of randomly selected locations of its surface, and we conclude that the use of a current limitation system increases the lifetime of the tips by a factor of ∼50. Our work contributes to significantly enhance the reliability of one of the most important characterization techniques in the field of nanoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA