Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154558

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Asunto(s)
Estructuras Embrionarias , Factores de Transcripción Forkhead , Enfermedades Renales , Riñón , Nefronas , Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Adulto , Animales , Humanos , Ratones , Estudio de Asociación del Genoma Completo , Riñón/anomalías , Riñón/embriología , Enfermedades Renales/genética , Ratones Noqueados , Nefronas/embriología , Factores de Transcripción/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/metabolismo
2.
Hum Genet ; 142(1): 73-88, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36066768

RESUMEN

Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Humanos , Ratones , Animales , Anomalías Urogenitales/genética , Riñón/anomalías , Sistema Urinario/anomalías , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Dishevelled/genética
3.
Hum Mol Genet ; 29(7): 1192-1204, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32179912

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of end-stage kidney disease in children. While the genetic aberrations underlying CAKUT pathogenesis are increasingly being elucidated, their consequences on a cellular and molecular level commonly remain unclear. Recently, we reported rare heterozygous deleterious LIFR variants in 3.3% of CAKUT patients, including a novel de novo frameshift variant, identified by whole-exome sequencing, in a patient with severe bilateral CAKUT. We also demonstrated CAKUT phenotypes in Lifr-/- and Lifr+/- mice, including a narrowed ureteric lumen due to muscular hypertrophy and a thickened urothelium. Here, we show that both in the ureter and bladder of Lifr-/- and Lifr+/- embryos, differentiation of the three urothelial cell types (basal, intermediate and superficial cells) occurs normally but that the turnover of superficial cells is elevated due to increased proliferation, enhanced differentiation from their progenitor cells (intermediate cells) and, importantly, shedding into the ureteric lumen. Microarray-based analysis of genome-wide transcriptional changes in Lifr-/- versus Lifr+/+ ureters identified gene networks associated with an antimicrobial inflammatory response. Finally, in a reverse phenotyping effort, significantly more superficial cells were detected in the urine of CAKUT patients with versus without LIFR variants indicating conserved LIFR-dependent urinary tract changes in the murine and human context. Our data suggest that LIFR signaling is required in the epithelium of the urinary tract to suppress an antimicrobial response under homeostatic conditions and that genetically induced inflammation-like changes underlie CAKUT pathogenesis in Lifr deficiency and LIFR haploinsufficiency.


Asunto(s)
Inflamación/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Anomalías Urogenitales/genética , Animales , Exoma/genética , Haploinsuficiencia/genética , Heterocigoto , Humanos , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/deficiencia , Ratones , Mutación/genética , Linaje , Sistema Urinario/metabolismo , Sistema Urinario/patología , Anomalías Urogenitales/patología , Urotelio/patología , Secuenciación del Exoma
4.
Clin Neuropathol ; 41(4): 162-167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445657

RESUMEN

Neurofibromatosis type 2 (NF2) is a tumor predisposition syndrome characterized by the growth of schwannomas, especially bilateral vestibular schwannomas (VS), meningiomas, and ependymomas. The anti-VEGF antibody bevacizumab has shown efficacy for VS in some NF2 patients. However, there is limited data on the effect of bevacizumab on non-vestibular tumors, and on the correlation between therapy response and genotype. Here, we report on a 33-year-old patient with bilateral VS, 14 additional intracranial or spinal schwannomas, and a meningioma treated with bevacizumab, off-label in the European Union, for 2 years. The genotype of the patient was determined by mutational analysis of NF2, SMARCB1, and LZTR1 on DNA of multiple tissues. Additionally, we performed volumetric measurements of quantifiable non-vestibular tumors (n = 8) on MRI scans from 5 pre-therapeutic and 2 therapeutic years, and pure-tone audiometry of the non-deaf ear. A heterozygous NM_000268.3(NF2):c.784C>T p.(Arg262*) variant was identified in DNA from 3 schwannomas, but not in leukocyte or oral mucosa DNA, and no rare SMARCB1/LZTR1 variants were detected, establishing the diagnosis of definite NF2 mosaicism. While schwannomas had progressed with a mean annual growth rate of 38% pre-therapeutically, volume stabilization or reduction of all schwannomas along with improvement of pain and neurological deficits, including hearing impairment, were observed under 24 months of bevacizumab. In summary, this is the first report of a sustained response to bevacizumab in a patient shown to carry the frequent mosaic NF2:c.784C>T p.(Arg262*) variant. Our results may be of particular relevance to guide treatment decisions in mosaic NF2 patients harboring this variant.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neurilemoma , Neurofibromatosis 2 , Adulto , Bevacizumab/uso terapéutico , Humanos , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/genética , Factores de Transcripción
5.
Acta Neuropathol ; 142(1): 191-210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33929593

RESUMEN

The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced ß-catenin binding resulting in increased cytosolic and nuclear ß-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/ß-catenin signaling.


Asunto(s)
Antígenos CD/genética , Neoplasias Encefálicas/genética , Cadherinas/genética , Carcinoma/genética , Neoplasias Neuroepiteliales/genética , Adenoma/genética , Adenoma/patología , Compuestos de Anilina/uso terapéutico , Animales , Diversidad de Anticuerpos , Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , ADN de Neoplasias/genética , Técnicas de Sustitución del Gen , Variación Genética , Células HEK293 , Humanos , Neoplasias Neuroepiteliales/tratamiento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Secuenciación Completa del Genoma
6.
Acta Neuropathol ; 139(1): 175-192, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31473790

RESUMEN

In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , División Celular/genética , Femenino , Fase G2/genética , Humanos , Masculino , Microtúbulos/genética , Persona de Mediana Edad , Eliminación de Secuencia , Adulto Joven
7.
Hum Mol Genet ; 26(9): 1716-1731, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334964

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. As CAKUT is a genetically heterogeneous disorder and most cases are genetically unexplained, we aimed to identify new CAKUT causing genes. Using whole-exome sequencing and trio-based de novo analysis, we identified a novel heterozygous de novo frameshift variant in the leukemia inhibitory factor receptor (LIFR) gene causing instability of the mRNA in a patient presenting with bilateral CAKUT and requiring kidney transplantation at one year of age. LIFR encodes a transmembrane receptor utilized by IL-6 family cytokines, mainly by the leukemia inhibitory factor (LIF). Mutational analysis of 121 further patients with severe CAKUT yielded two rare heterozygous LIFR missense variants predicted to be pathogenic in three unrelated patients. LIFR mutants showed decreased half-life and cell membrane localization resulting in reduced LIF-stimulated STAT3 phosphorylation. LIFR showed high expression in human fetal kidney and the human ureter, and was also expressed in the developing murine urogenital system. Lifr knockout mice displayed urinary tract malformations including hydronephrosis, hydroureter, ureter ectopia, and, consistently, reduced ureteral lumen and muscular hypertrophy, similar to the phenotypes observed in patients carrying LIFR variants. Additionally, a form of cryptorchidism was detected in all Lifr-/- mice and the patient carrying the LIFR frameshift mutation. Altogether, we demonstrate heterozygous novel or rare LIFR mutations in 3.3% of CAKUT patients, and provide evidence that Lifr deficiency and deactivating LIFR mutations cause highly similar anomalies of the urogenital tract in mice and humans.


Asunto(s)
Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo , Anomalías Urogenitales/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Exoma , Femenino , Heterocigoto , Humanos , Lactante , Riñón/anomalías , Riñón/patología , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Análisis de Secuencia de ADN , Uréter/anomalías , Uréter/patología , Sistema Urinario/patología
8.
Acta Neuropathol ; 134(6): 905-922, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29030706

RESUMEN

In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.


Asunto(s)
Adenosina Desaminasa/genética , Predisposición Genética a la Enfermedad , Interferón Tipo I/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa H/genética , Adenosina Desaminasa/metabolismo , Adulto , Animales , Células Cultivadas , Estudios de Cohortes , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Femenino , Fibroblastos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Ratones Noqueados , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Estabilidad Proteica , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/genética
9.
Hum Genet ; 135(1): 69-87, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26572137

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis.


Asunto(s)
Exoma , Proteínas Activadoras de GTPasa/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Preescolar , Femenino , Proteínas Activadoras de GTPasa/química , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido , Adulto Joven
10.
Acta Neuropathol ; 129(5): 679-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25783747

RESUMEN

Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether large-scale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome- and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, including three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups. Correlation of DNA-based molecular stratification with clinical outcome allowed to define three major prognostic groups with characteristic genomic aberrations. The best prognosis was found in patients with IDH1/2 mutant and 1p/19q co-deleted tumors. Patients with IDH1/2 wild-type gliomas and glioblastoma-like genomic alterations, including gain on chromosome arm 7q (+7q), loss on chromosome arm 10q (-10q), TERT promoter mutation and oncogene amplification, displayed the worst outcome. Intermediate survival was seen in patients with IDH1/2 mutant, but 1p/19q intact, mostly astrocytic gliomas, and in patients with IDH1/2 wild-type gliomas lacking the +7q/-10q genotype and TERT promoter mutation. This molecular subgrouping stratified patients into prognostically distinct groups better than histological classification. Addition of gene expression data to this genomic classifier did not further improve prognostic stratification. In summary, DNA-based molecular profiling of WHO grade II and III gliomas distinguishes biologically distinct tumor groups and provides prognostically relevant information beyond histological classification as well as IDH1/2 mutation and 1p/19q co-deletion status.


Asunto(s)
Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Glioma/genética , Isocitrato Deshidrogenasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Glioma/clasificación , Glioma/patología , Glioma/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor/métodos , Pronóstico , Regiones Promotoras Genéticas , Eliminación de Secuencia , Organización Mundial de la Salud , Adulto Joven
11.
Genes Chromosomes Cancer ; 53(7): 589-605, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24706357

RESUMEN

Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia/genética , Transcriptoma/fisiología , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/metabolismo , Variaciones en el Número de Copia de ADN , Femenino , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Estudios Prospectivos
12.
Int J Cancer ; 135(8): 1822-31, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24615357

RESUMEN

The prognosis of glioblastoma, the most malignant type of glioma, is still poor, with only a minority of patients showing long-term survival of more than three years after diagnosis. To elucidate the molecular aberrations in glioblastomas of long-term survivors, we performed genome- and/or transcriptome-wide molecular profiling of glioblastoma samples from 94 patients, including 28 long-term survivors with >36 months overall survival (OS), 20 short-term survivors with <12 months OS and 46 patients with intermediate OS. Integrative bioinformatic analyses were used to characterize molecular aberrations in the distinct survival groups considering established molecular markers such as isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations, and O(6) -methylguanine DNA methyltransferase (MGMT) promoter methylation. Patients with long-term survival were younger and more often had IDH1/2-mutant and MGMT-methylated tumors. Gene expression profiling revealed over-representation of a distinct (proneural-like) expression signature in long-term survivors that was linked to IDH1/2 mutation. However, IDH1/2-wildtype glioblastomas from long-term survivors did not show distinct gene expression profiles and included proneural, classical and mesenchymal glioblastoma subtypes. Genomic imbalances also differed between IDH1/2-mutant and IDH1/2-wildtype tumors, but not between survival groups of IDH1/2-wildtype patients. Thus, our data support an important role for MGMT promoter methylation and IDH1/2 mutation in glioblastoma long-term survival and corroborate the association of IDH1/2 mutation with distinct genomic and transcriptional profiles. Importantly, however, IDH1/2-wildtype glioblastomas in our cohort of long-term survivors lacked distinctive DNA copy number changes and gene expression signatures, indicating that other factors might have been responsible for long survival in this particular subgroup of patients.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Transcriptoma , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Genoma Humano , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Estudios Prospectivos , Sobrevivientes , Proteínas Supresoras de Tumor/genética
13.
Hum Genet ; 132(7): 825-41, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23552953

RESUMEN

When a known microimbalance affecting multiple genes is detected in a patient with syndromic intellectual disability, it is usually presumed causative for all observed features. Whole exome sequencing (WES) allows questioning this assumption. In this study of three families with children affected by unexplained syndromic intellectual disability, genome-wide copy number and subsequent analyses revealed a de novo maternal 1.1 Mb microdeletion in the 14q32 imprinted region causing a paternal UPD(14)-like phenotype, and two inherited 22q11.21 microduplications of 2.5 or 2.8 Mb. In patient 1 carrying the 14q32 microdeletion, tall stature and renal malformation were unexplained by paternal UPD(14), and there was no altered DLK1 expression or unexpected methylation status. By WES and filtering with a mining tool, a novel FBN1 missense variant was found in patient 1 and his mother, who both showed clinical features of Marfan syndrome by thorough anthropometric assessment, and a novel EYA1 missense variant as a probable cause of the renal malformation in the patient. In patient 2 with the 22q11.21 microduplication syndrome, skin hypo- and hyperpigmentation and two malignancies were only partially explained. By WES, compound heterozygous BLM stop founder mutations were detected causing Bloom syndrome. In male patient 3 carrying a 22q11.21 microduplication inherited from his unaffected father, WES identified a novel missense variant in the OPHN1 X-linked intellectual disability gene inherited from the unaffected mother as a possible additional cause for developmental delay. Thus, WES seems warranted in patients carrying microdeletions or microduplications, who have unexplained clinical features or microimbalances inherited from an unaffected parent.


Asunto(s)
Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 22/genética , Trastornos del Conocimiento/genética , Exoma , Enfermedades Genéticas Congénitas/genética , Estudio de Asociación del Genoma Completo , Genotipo , Deleción Cromosómica , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Dosificación de Gen , Humanos , Masculino , Mutación Missense , Proteínas Nucleares/genética
14.
Brain ; 135(Pt 4): 1027-41, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22427331

RESUMEN

In a strategy to identify novel genes involved in glioma pathogenesis by molecular characterization of chromosomal translocation breakpoints, we identified the KIAA1797 gene, encoding a protein with an as yet undefined function, to be disrupted by a 7;9 translocation in a primary glioblastoma culture. Array-based comparative genomic hybridization detected deletions involving KIAA1797 in around half of glioblastoma cell lines and glioblastomas investigated. Quantification of messenger RNA levels in human tissues demonstrated highest KIAA1797 expression in brain, reduced levels in all glioblastoma cell lines and most glioblastomas and similar levels in glial and neuronal cells by analysis of different hippocampal regions from murine brain. Antibodies against KIAA1797 were generated and showed similar protein levels in cortex and subcortical white matter of human brain, while levels were significantly reduced in glioblastomas with KIAA1797 deletion. By immunofluorescence of astrocytoma cells, KIAA1797 co-localized with vinculin in focal adhesions. Physical interaction between KIAA1797 and vinculin was demonstrated via co-immunoprecipitation. Functional in vitro assays demonstrated a significant decrease in colony formation, migration and invasion capacity of LN18 and U87MG glioma cells carrying a homozygous KIAA1797 deletion ectopically expressing KIAA1797 compared with mock-transduced cells. In an in vivo orthotopic xenograft mouse model, U87MG tumour lesions expressing KIAA1797 had a significantly reduced volume compared to tumours not expressing KIAA1797. In summary, the frequently deleted KIAA1797 gene encodes a novel focal adhesion complex protein with tumour suppressor function in gliomas, which we name 'focadhesin'. Since KIAA1797 genetic variation has been implicated in Alzheimer's disease, our data are also relevant for neurodegeneration.


Asunto(s)
Neoplasias Encefálicas/genética , Adhesiones Focales/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/fisiología , Glioblastoma/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Hibridación Genómica Comparativa , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Modelos Animales de Enfermedad , Femenino , Adhesiones Focales/inmunología , Adhesiones Focales/metabolismo , Gadolinio , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Técnicas In Vitro , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neuroglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Transfección , Ensayo de Tumor de Célula Madre/métodos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Vinculina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Kidney Int Rep ; 8(11): 2439-2457, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025229

RESUMEN

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods: Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results: In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion: WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.

16.
Acta Neuropathol Commun ; 11(1): 184, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990341

RESUMEN

Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.


Asunto(s)
Glioblastoma , Glioma , Humanos , ADN Polimerasa II/genética , Dominio Catalítico , Mutación de Línea Germinal , Glioma/genética , ADN , ADN Polimerasa III/genética
17.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37343523

RESUMEN

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Glioma/patología , Haploinsuficiencia/genética , Mutación/genética , Inhibidor NF-kappaB alfa/genética , Isocitrato Deshidrogenasa
18.
Breast Cancer Res Treat ; 135(1): 167-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22729890

RESUMEN

Numerous allelic variants identified in the familial breast cancer and DNA repair genes BRCA1 and BRCA2 are of unknown impact on protein function or clinical relevance, referred to as unclassified variants (UCV). Lymphocytes from pathogenic BRCA1/2 mutation carriers exhibit an increased level of chromosomal damage after irradiation. We established a radiation assay for the discrimination of pathogenic BRCA2 variants versus controls based on the level of chromosomal damage upon irradiation (p < 0.001). As a consequence, lymphocytes from UCV carriers could be separated into two distinct groups with normal or diminished DNA double strand break repair capacity. Our results suggested that all five UCV tested were benign and that one family carried a putative mutation in an as yet undetected DNA-repair gene. Thus, our test may serve as a valuable tool that aids the classification of BRCA2 UCV, but very likely also of BRCA1 UCV or aberrations in other genes involved in the DNA-repair system.


Asunto(s)
Proteína BRCA2/genética , Neoplasias de la Mama/genética , Rotura Cromosómica , Cromosomas Humanos/efectos de la radiación , Genes BRCA2 , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Femenino , Heterocigoto , Humanos , Persona de Mediana Edad , Mutación , Tolerancia a Radiación/genética , Rayos Ultravioleta
19.
Am J Med Genet A ; 158A(4): 695-706, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22367666

RESUMEN

Detailed molecular-cytogenetic studies combined with thorough clinical characterization are needed to establish genotype-phenotype correlations for specific chromosome deletion syndromes. Although many patients with subtelomeric deletions have been reported, the phenotype maps for many of the corresponding syndromes, including the terminal deletion 14q syndrome, are only slowly emerging. Here, we report on five patients with terminal partial monosomy of 14q32.3 and characteristic features of terminal deletion 14q syndrome. Four of the patients carry de novo terminal deletions of 14q, three of which have not yet been reported. One patient carries an unbalanced translocation der(14)t(9;14)(q34.3;q32.3). Minimum deletion sizes as determined by molecular karyotyping and FISH are 5.82, 5.56, 4.17, 3.54, and 3.29 Mb, respectively. Based on our findings and a comprehensive review of the literature, we refine the phenotype map for typical clinical findings of the terminal deletion 14q syndrome (i.e., intellectual disability/developmental delay, muscular hypotonia, postnatal growth retardation, microcephaly, congenital heart defects, genitourinary malformations, ocular coloboma, and several dysmorphic signs). Combining this phenotype map with benign copy-number variation data available from the Database of Genomic Variants, we propose a small region critical for certain features of the terminal deletion 14q syndrome which contains only seven RefSeq genes.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 14/genética , Dosificación de Gen/genética , Estudios de Asociación Genética , Eliminación de Secuencia/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Femenino , Genotipo , Alemania , Humanos , Lactante , Masculino , Países Bajos , Fenotipo , Turquía
20.
Nephrol Dial Transplant ; 27(6): 2355-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22146311

RESUMEN

BACKGROUND: Recently, we identified a microduplication in chromosomal band 1q21.1 encompassing the CHD1L/ALC1 gene encoding a chromatin-remodelling enzyme in congenital anomalies of the kidneys and urinary tract (CAKUT) patient. METHODS: To explore the role of CHD1L in CAKUT, we screened 85 CAKUT patients for mutations in the CHD1L gene and performed functional analyses of the three heterozygous missense variants detected. In addition, we quantitatively determined CHD1L expression in multiple human fetal and adult tissues and analysed expression of CHD1L protein in human embryonal, adult and hydronephrotic kidney sections. RESULTS: Two of three novel heterozygous missense variants identified in three patients were not found in >400 control chromosomes. All variants lead to amino acid substitutions in or near the CHD1L macro domain, a poly-ADP-ribose (PAR)-binding module interacting with PAR polymerase 1 (PARP1), and showed decreased interaction with PARP1 by pull-down assay of transfected cell lysates. Quantitative messenger RNA analysis demonstrated high CHD1L expression in human fetal kidneys, and levels were four times higher than in adult kidneys. In the human embryo at 7-11 weeks gestation, CHD1L immunolocalized in the early ureteric bud and the S- and comma-shaped bodies, critical stages of kidney development. In normal postnatal sections, CHD1L was expressed in the cytoplasm of tubular cells in all tubule segments. CHD1L expression appeared higher in the hydronephrotic kidney of one patient with a hypofunctional CHD1L variant than in normal kidneys, recapitulating high fetal levels. CONCLUSION: Our data suggest that CHD1L plays a role in kidney development and may be a new candidate gene for CAKUT.


Asunto(s)
Anomalías Congénitas/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Riñón/anomalías , Mutación/genética , Sistema Urinario/anomalías , Adulto , Western Blotting , Células Cultivadas , Niño , Preescolar , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Feto , Técnica del Anticuerpo Fluorescente , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Lactante , Recién Nacido , Riñón/embriología , Riñón/metabolismo , Masculino , Linaje , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sistema Urinario/embriología , Sistema Urinario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA