Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8280-8297, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38467029

RESUMEN

Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.

2.
Phys Chem Chem Phys ; 25(16): 11216-11226, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039608

RESUMEN

Synchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts in Resonant Inelastic X-ray Scattering (RIXS) signals. Simulated and experimental spectroscopy are directly compared to show that the promoter metal identity controls the orbital shifts in platinum electronic structure. The associated RIXS features are correlated with the differences in the band centers of the occupied and unoccupied d bands, providing chemical intuition for the alloy ligand effect and providing a connection to traditional descriptions of chemisorption. The ready accessibility of this descriptor to both DFT calculations and experimental spectroscopy, and its connection to chemisorption, allow for deeper connections between theory and characterization in the discovery of new catalysts.

3.
Angew Chem Int Ed Engl ; 60(17): 9516-9526, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33492674

RESUMEN

We elucidate the structural evolution of CoN4 sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)-8-derived carbon host as an ideal model for Co2+ ion adsorption. Subsequent in situ X-ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co-OH and Co-O species into active CoN4 sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four-electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal-induced compressive strain of Co-N bonds in CoN4 active sites formed at 900 °C. Further, we developed a two-step (i.e., Co ion doping and adsorption) Co-N-C catalyst with increased CoN4 site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

4.
J Am Chem Soc ; 142(49): 20631-20639, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231440

RESUMEN

High-valent Pd complexes are potent agents for the oxidative functionalization of inert C-H bonds, and it was previously shown that rapid electrocatalytic methane monofunctionalization could be achieved by electro-oxidation of PdII to a critical dinuclear PdIII intermediate in concentrated or fuming sulfuric acid. However, the structure of this highly reactive, unisolable intermediate, as well as the structural basis for its mechanism of electrochemical formation, remained elusive. Herein, we use X-ray absorption and Raman spectroscopies to assemble a structural model of the potent methane-activating intermediate as a PdIII dimer with a Pd-Pd bond and a 5-fold O atom coordination by HxSO4(x-2) ligands at each Pd center. We further use EPR spectroscopy to identify a mixed-valent M-M bonded Pd2II,III species as a key intermediate during the PdII-to-PdIII2 oxidation. Combining EPR and electrochemical data, we quantify the free energy of Pd dimerization as <-4.5 kcal/mol for Pd2II,III and <-9.1 kcal/mol for PdIII2. The structural and thermochemical data suggest that the aggregate effect of metal-metal and axial metal-ligand bond formation drives the critical Pd dimerization reaction in between electrochemical oxidation steps. This work establishes a structural basis for the facile electrochemical oxidation of PdII to a M-M bonded PdIII dimer and provides a foundation for understanding its rapid methane functionalization reactivity.

5.
J Am Chem Soc ; 141(15): 6325-6337, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30900885

RESUMEN

Single-site supported organometallic catalysts bring together the favorable aspects of homogeneous and heterogeneous catalysis while offering opportunities to investigate the impact of metal-support interactions on reactivity. We report a ( dmPhebox)Ir(III) ( dmPhebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complex chemisorbed on sulfated zirconia, the molecular precursor for which was previously applied to hydrocarbon functionalization. Spectroscopic methods such as diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS), dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and X-ray absorption spectroscopy (XAS) were used to characterize the supported species. Tetrabutylammonium acetate was found to remove the organometallic species from the surface, enabling solution-phase analytical techniques in conjunction with traditional surface methods. Cationic character was imparted to the iridium center by its grafting onto sulfated zirconia, imbuing high levels of activity in electrophilic C-H bond functionalization reactions such as the stoichiometric dehydrogenation of alkanes, with density functional theory (DFT) calculations showing a lower barrier for ß-H elimination. Catalytic hydrogenation of olefins was also facilitated by the sulfated zirconia-supported ( dmPhebox)Ir(III) complex, while the homologous complex on silica was inactive under comparable conditions.

7.
Nat Mater ; 17(4): 341-348, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507417

RESUMEN

There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

8.
J Am Chem Soc ; 140(43): 14244-14266, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30265002

RESUMEN

Lewis acid sites in zeolites catalyze aqueous-phase sugar isomerization at higher turnover rates when confined within hydrophobic rather than within hydrophilic micropores; however, relative contributions of competitive water adsorption at active sites and preferential stabilization of isomerization transition states have remained unclear. Here, we employ a suite of experimental and theoretical techniques to elucidate the effects of coadsorbed water on glucose isomerization reaction coordinate free energy landscapes. Transmission IR spectra provide evidence that water forms extended hydrogen-bonding networks within hydrophilic but not hydrophobic micropores of Beta zeolites. Aqueous-phase glucose isomerization turnover rates measured on Ti-Beta zeolites transition from first-order to zero-order dependence on glucose thermodynamic activity, as Lewis acidic Ti sites transition from water-covered to glucose-covered, consistent with intermediates identified from modulation excitation spectroscopy during in situ attenuated total reflectance IR experiments. First-order and zero-order isomerization rate constants are systematically higher (by 3-12×, 368-383 K) when Ti sites are confined within hydrophobic micropores. Apparent activation enthalpies and entropies reveal that glucose and water competitive adsorption at Ti sites depend weakly on confining environment polarity, while Gibbs free energies of hydride-shift isomerization transition states are lower when confined within hydrophobic micropores. DFT calculations suggest that interactions between intraporous water and isomerization transition states increase effective transition state sizes through second-shell solvation spheres, reducing primary solvation sphere flexibility. These findings clarify the effects of hydrophobic pockets on the stability of coadsorbed water and isomerization transition states and suggest design strategies that modify micropore polarity to influence turnover rates in liquid water.

10.
J Org Chem ; 82(11): 5959-5965, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28485932

RESUMEN

Heterogeneous semiconductors are underexploited as photoredox catalysts in organic synthesis relative to their homogeneous, molecular counterparts. Here, we report the use of metal/TiO2 particles as catalysts for light-induced dehydrogenative imine transformations. The highly oxophilic nature of the TiO2 surface promotes the selective binding and dehydrogenation of alcohols in the presence of other oxidizable and Lewis basic functional groups. This feature enables the clean photogeneration of aldehyde equivalents that can be utilized in multicomponent couplings.

11.
Inorg Chem ; 56(23): 14396-14407, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29131598

RESUMEN

Thiol-amine mixtures are an attractive medium for the solution processing of semiconducting thin films because of their remarkable ability to dissolve a variety of metals, metal chalcogenides, metal salts, and chalcogens. However, very little is known about their dissolution chemistry. Electrospray ionization high-resolution tandem mass spectrometry and X-ray absorption spectroscopy were employed to identify the species formed upon dissolution of CuCl and CuCl2 in 1-propanethiol and n-butylamine. Copper was found to be present exclusively in the 1+ oxidation state for both solutions. The copper complexes detected include copper chlorides, copper thiolates, and copper thiolate chlorides. No complexes of copper with amines were observed. Additionally, alkylammonium ions and alkylammonium chloride adducts were observed. These findings suggest that the dissolution is initiated by proton transfer from the thiol to the amine, followed by coordination of the thiolate anions with copper cations. Interestingly, the mass and X-ray absorption spectra of the solutions of CuCl and CuCl2 in thiol-amine were essentially identical. However, dialkyl disulfides were identified by Raman spectroscopy as an oxidation product only for the copper(II) solution, wherein copper(II) had been reduced to copper(I). Analysis of several thiol-amine pairs suggested that the dissolution mechanism is quite general. Finally, analysis of thin films prepared from these solutions revealed persistent chlorine impurities, in agreement with previous studies. These impurities are explained by the mass spectrometric finding that chloride ligands are not completely displaced by thiolates upon dissolution. These results suggest that precursors other than chlorides will likely be preferred for the generation of high-efficiency copper chalcogenide films, despite the reasonable efficiencies that have been obtained for films generated from chloride precursors in the past.

12.
Animals (Basel) ; 13(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958067

RESUMEN

Mycotoxin sequestration materials are important tools to reduce mycotoxin illness and enable proper handling of mycotoxin-contaminated commodities. Three food-grade bentonite clays and four generally recognized as safe (GRAS) charcoal/biochar carbon materials that are marketed as feed additives and supplements were evaluated for their ability to sequester the mycotoxins aflatoxin B1, ochratoxin A, and zearalenone. The surface area of the clays varied between 32.1 to 51.4 mg2/g, and the surface area of the carbon-based materials varied from 1.7 to 1735 mg2/g. In vitro, gastric fluid studies indicated that certain pine biochar and activated coconut charcoal could sequester high amounts (85+%) of the mycotoxins at 1 ppm levels or below. However, some biochar materials with lower surface area properties lacked binding capacity. The coconut shell charcoal and pine biochar utilize agricultural waste products in a manner that significantly reduces carbon emissions and provides valuable materials to minimize exposure to toxins found in food and feed.

13.
Chem Sci ; 11(19): 5066-5081, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34122964

RESUMEN

Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5-8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd3M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C-C and C-H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C-C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd3M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity.

14.
ACS Appl Mater Interfaces ; 12(29): 32736-32745, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32583657

RESUMEN

Layered double hydroxides (LDHs) are an ideal platform to host catalytic metal centers for water oxidation (WO) owing to the high accessibility of water to the interlayer region, which makes all centers potentially reachable and activated. Herein, we report the syntheses of three iridium-doped zinc-aluminum LDHs (Ir-LDHs) nanomaterials (1-3, with about 80 nm of planar size and a thickness of 8 nm as derived by field emission scanning electron microscopy and powder X-ray diffraction studies, respectively), carried out in the confined aqueous environment of reverse micelles, through a very simple and versatile procedure. These materials exhibit excellent catalytic performances in WO driven by NaIO4 at neutral pH and 25 °C, with an iridium content as low as 0.5 mol % (∼0.8 wt %), leading to quantitative oxygen yields (based on utilized NaIO4, turnover number up to ∼10,000). Nanomaterials 1-3 display the highest ever reported turnover frequency values (up to 402 min-1) for any heterogeneous and heterogenized catalyst, comparable only to those of the most efficient molecular iridium catalysts, tested under similar reaction conditions. The boost in activity can be traced to the increased surface area and pore volume (>5 times and 1 order of magnitude, respectively, higher than those of micrometric materials of size 0.3-1 µm) estimated for the nanosized particles, which guarantee higher noble metal accessibility. X-ray absorption spectroscopy (XAS) studies suggest that 1-3 nanomaterials, as-prepared and after catalysis, contain a mixture of isolated, single octahedral Ir(III) sites, with no evidence of Ir-Ir scattering from second-nearest neighbors, excluding the presence of IrO2 nanoparticles. The combination of the results obtained from XAS, elemental analysis, and ionic chromatography strongly suggests that iridium is embedded in the brucite-like structure of LDHs, having four hydroxyls and two chlorides as first neighbors. These results demonstrate that nanometric LDHs can be successfully exploited to engineer efficient WOCs, minimizing the amount of iridium used, consistent with the principle of the noble-metal atom economy.

15.
ACS Sustain Chem Eng ; 8(32): 12151-12160, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38435970

RESUMEN

Oxymethylene dimethyl ethers (OMEs), CH3-(OCH2)n-OCH3, n = 1-5, possess attractive low-soot diesel fuel properties. Methanol is a key precursor in the production of OMEs, providing an opportunity to incorporate renewable carbon sources via gasification and methanol synthesis. The costly production of anhydrous formaldehyde in the typical process limits this option. In contrast, the direct production of OMEs via a dehydrogenative coupling (DHC) reaction, where formaldehyde is produced and consumed in a single reactor, may address this limitation. We report the gas-phase DHC reaction of methanol to dimethoxymethane (DMM), the simplest OME, with n = 1, over bifunctional metal-acid catalysts based on Cu. A Cu-zirconia-alumina (Cu/ZrAlO) catalyst achieved 40% of the DMM equilibrium-limited yield under remarkably mild conditions (200 °C, 1.7 atm). The performance of the Cu/ZrAlO catalyst was attributed to metallic Cu nanoparticles that enable dehydrogenation and a distribution of acid strengths on the ZrAlO support, which reduced the selectivity to dimethyl ether compared to a that obtained with a Cu/Al2O3 catalyst. The DMM formation rate of 6.1 h-1 compares favorably against well-studied oxidative DHC approaches over non-noble, mixed-metal oxide catalysts. The results reported here set the foundation for further development of the DHC route to OME production, rather than oxidative approaches.

16.
Nat Commun ; 9(1): 3827, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237399

RESUMEN

Catalysts consisting of metal particles supported on reducible oxides exhibit promising activity and selectivity for a variety of current and emerging industrial processes. Enhanced catalytic activity can arise from direct contact between the support and the metal or from metal-induced promoter effects on the oxide. Discovering the source of enhanced catalytic activity and selectivity is challenging, with conflicting arguments often presented based on indirect evidence. Here, we separate the metal from the support by a controlled distance while maintaining the ability to promote defects via the use of carbon nanotube hydrogen highways. As illustrative cases, we use this approach to show that the selective transformation of furfural to methylfuran over Pd/TiO2 occurs at the Pd-TiO2 interface while anisole conversion to phenol and cresol over Cu/TiO2 is facilitated by exposed Ti3+ cations on the support. This approach can be used to clarify many conflicting arguments in the literature.

17.
ACS Nano ; 12(1): 158-167, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29211437

RESUMEN

Oxygen evolution reaction (OER) is a pivotal process in many energy conversion and storage techniques, such as water splitting, regenerative fuel cells, and rechargeable metal-air batteries. The synthesis of stable, efficient, non-noble metal-based electrocatalysts for OER has been a long-standing challenge. In this work, a facile and scalable method to synthesize hollow and conductive iron-cobalt phosphide (Fe-Co-P) alloy nanostructures using an Fe-Co metal organic complex as a precursor is described. The Fe-Co-P alloy exhibits excellent OER activity with a specific current density of 10 mA/cm2 being achieved at an overpotential as low as 252 mV. The current density at 1.5 V (vs reversible hydrogen electrode) of the Fe-Co-P catalyst is 30.7 mA/cm2, which is more than 3 orders of magnitude greater than that obtained with state-of-the-art Fe-Co oxide catalysts. Our mechanistic experiments and theoretical analysis suggest that the electrochemical-induced high-valent iron stabilizes the cobalt in a low-valent state, leading to the simultaneous enhancement of activity and stability of the OER catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA