Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 110(5): 1012-1024, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38320204

RESUMEN

Cyclophosphamide (CP) is a widely used chemotherapeutic drug and immunosuppressant in the clinic, and the hypoandrogenism caused by CP is receiving more attention. Some studies found that ferroptosis is a new mechanism of cell death closely related to chemotherapeutic drugs and plays a key role in regulating reproductive injuries. The purpose of this study is to explore ferroptosis' role in testicular Leydig cell dysfunction and molecular mechanisms relating to it. In this study, the level of ferroptosis in the mouse model of testicular Leydig cell dysfunction induced by CP was significantly increased and further affected testosterone synthesis. The ferroptosis inhibitors ferrostatin-1 (Fer-1) and iron chelator deferoxamine (DFO) can improve injury induced by CP. The results of immunohistochemistry showed that Fer-1 and DFO could improve the structural disorder of seminiferous tubules and the decrease of the number of Leydig cells in testicular tissue induced by CP. Immunofluorescence and western blot confirmed that Fer-1 and DFO could improve the expression of key enzymes in testosterone synthesis. The activation of SMAD family member 2 (Smad2)/cyclin-dependent kinase inhibitor 1A (Cdkn1a) pathway can improve the ferroptosis of Leydig cells induced by CP and protect the function of Leydig cells. By inhibiting the Smad2/Cdkn1a signal pathway, CP can regulate ferroptosis, resulting in testicular Leydig cell dysfunction. In this study, CP-induced hypoandrogenism is explained theoretically and a potential therapeutic strategy is provided.


Asunto(s)
Ciclofosfamida , Ferroptosis , Células Intersticiales del Testículo , Proteína Smad2 , Animales , Masculino , Ratones , Ciclohexilaminas/farmacología , Ciclofosfamida/toxicidad , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Fenilendiaminas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología
2.
Asian J Androl ; 25(4): 474-483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36537377

RESUMEN

Cyclophosphamide-induced testosterone deficiency (CPTD) during the treatment of cancers and autoimmune disorders severely influences the quality of life of patients. Currently, several guidelines recommend patients suffering from CPTD receive testosterone replacement therapy (TRT). However, TRT has many disadvantages underscoring the requirement for alternative, nontoxic treatment strategies. We previously reported bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exos) could alleviate cyclophosphamide (CP)-induced spermatogenesis dysfunction, highlighting their role in the treatment of male reproductive disorders. Therefore, we further investigated whether BMSCs-exos affect autophagy and testosterone synthesis in Leydig cells (LCs). Here, we examined the effects and probed the molecular mechanisms of BMSCs-exos on CPTD in vivo and in vitro by detecting the expression levels of genes and proteins related to autophagy and testosterone synthesis. Furthermore, the testosterone concentration in serum and cell-conditioned medium, and the photophosphorylation protein levels of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were measured. Our results suggest that BMSCs-exos could be absorbed by LCs through the blood-testis barrier in mice, promoting autophagy in LCs and improving the CP-induced low serum testosterone levels. BMSCs-exos inhibited cell death in CP-exposed LCs, regulated the AMPK-mTOR signaling pathway to promote autophagy in LCs, and then improved the low testosterone synthesis ability of CP-induced LCs. Moreover, the autophagy inhibitor, 3-methyladenine (3-MA), significantly reversed the therapeutic effects of BMSCs-exos. These findings suggest that BMSCs-exos promote LC autophagy by regulating the AMPK-mTOR signaling pathway, thereby ameliorating CPTD. This study provides novel evidence for the clinical improvement of CPTD using BMSCs-exos.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exosomas , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Exosomas/metabolismo , Células Intersticiales del Testículo/metabolismo , Calidad de Vida , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/fisiología , Testosterona/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA