Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(8): e202316936, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179834

RESUMEN

Copper is a crucial catalyst in the synthesis of graphdiyne (GDY). However, as catalysts, the final fate of the copper ions has hardly been concerned, which are usually treated as impurities. Here, it is observed that after simple washing with water and ethanol, GDY still contains a certain amount of copper ions, and demonstrated that the copper ions are adsorbed at the atomic layers of GDY. Furthermore, we transformed in situ the copper ions into ultrathin Cu nanocrystals, and the obtained Cu/GDY hybrids can be generally converted into a series of metal/GDY hybrid materials, such as Ag/GDY, Au/GDY, Pt/GDY, Pd/GDY, and Rh/GDY. The Cu/GDY hybrids exhibit extraordinary surface enhanced Raman scattering effect and can be applied in pollutant efficient enrichment and detection.

2.
Angew Chem Int Ed Engl ; 63(11): e202319847, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38195861

RESUMEN

Irregular Li deposition is the major reason for poor reversibility and cycle instability in Li metal batteries, even leading to safety hazards, the causes of which have been extensively explored. The structural disconnection induced by completely dissolving Li in the traditional testing protocol is a key factor accounting for irregular Li growth during the subsequent deposition process. Herein, the critical role played by the structural connectivity of electrochemical Li reservoir in subsequent Li deposition behaviors is elucidated and a morphology-performance correlation is established. The structural connection and resultant well-distributed morphology of the in situ electrochemical Li reservoir ensure efficient electron transfer and Li+ diffusion pathway, finally leading to homogenized Li nucleation and growth. Tailoring the geometry of Li reservoir can improve the coulombic efficiency and cyclability of anode-free Li metal batteries by optimizing Li deposition behavior.

3.
Front Chem ; 12: 1412457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863675

RESUMEN

Water pollution caused by antibiotics is a growing problem and photodegradation by efficient catalysts is an environmentally friendly technology that can effectively degrade organic pollutants in water. Here, a novel method was innovatively used to synthesize niobium oxyfluoride (Nb3O7F) nanosheets decorated with Au nanoparticles, which is the first report for the composites of Au and Nb3O7F. We prepared the Nb3O7F nanosheets via hydrothermal synthesis followed by deposition of Au nanoparticles on their surface using HAuCl4. The prepared samples were characterized by XRD, HRTEM, XPS, and UV-Vis. The diameters of most Au NPs are ranging from 5 to 25 nm with an average size of about 16.9 nm, as well as the Nb3O7F nanosheets in size ranging from 200 nm to 700 nm. The chemical composition of the Au-Nb3O7F showed a Au/Nb atomic ratio of 1/10, as well as a Nb/O/F ratio of 3/7/1. UV-Vis spectrum reveals a largest absorption peak at 520 nm for the Au-Nb3O7F nanosheets. The prepared Au-Nb3O7F nanomaterials were applied to the visible-light photodegradation of tetracycline hydrochloride, with the photocatalytic degradation rate reached more than 50% under the optimal conditions within 1 h. Capture experiments indicated that h+ and •O2 - are the main active substances involved during the course of the photodegradation. Furthermore, the proposed mechanism for the photodegradation of the novel Au-Nb3O7F nanosheets was given.

4.
Heliyon ; 10(4): e25515, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375258

RESUMEN

Facing the growing issue of cardiovascular diseases, metallic materials with higher tensile strength and fatigue resistance play an important role in treating diseases. This review lists the advantages and drawbacks of commonly used medical metallic materials for vascular stents. To avoid post-procedural threats such as thrombosis and in-stent restenosis, surface treatments, and coating methods have been used to further improve the biocompatibility of these materials. Surface treatments including laser, plasma treatment, polishing, oxidization, and fluorination can improve biocompatibility by modifying the surface charges, surface morphology, and surface properties of the material. Coating methods based on polymer coatings, carbon-based coatings, and drug-functional coatings can regulate the surface properties, and also serve as an effective barrier to the interaction of metallic biomaterial surfaces with biomolecules, which can be used to improve corrosion resistance and stability, as well as improve their biocompatibility. Biocompatibility serves as the most fundamental property of cardiovascular stents, and maintaining the excellent and stable biocompatibility of cardiovascular stent surfaces is a current research bottleneck. Few reviews have been published on metallic biomaterials as cardiovascular stents and their surface treatments. For the purpose of advancing research on cardiovascular stents, common metal biomaterials, surface treatment methods, and coating methods to improve biocompatibility and comprehensive properties of the materials are described in this review. Finally, we suggest future directions for stent development, including continuously improving the durability and stability of permanent stents, accelerating the development of biodegradable stents, and strengthening feedback to improve the safety and reliability of cardiovascular stents.

5.
Food Chem ; 458: 140246, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38954952

RESUMEN

In this study, a simple, sensitive, and rapid method was developed for the simultaneous determination of 99 kinds of pesticides in fatty milk samples. This novel emulsification-demulsification clean-up approach, coupled with an automatic demulsification-dehydration cartridge, allowed rapid single-step clean-up operation and high throughput. It also achieved effective and selective removal of lipids. The analysis was performed using low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS). Based on the optimal conditions, the targeted pesticides showed good linearity in the range of 5-250 µg/kg, with recoveries of 70-120% at spiking levels of 5, 10, and 20 µg/kg in cow milk, goat milk, and almond milk, respectively. The limit of quantification for most pesticides was 5 µg/kg, and the RSDs were lower than 20%. Analysis of real dairy products obtained from local markets revealed a potential risk in plant-derived almond milk, but no significant risks were found for cow and goat milk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA