Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(21): e2308783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105423

RESUMEN

The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).

2.
Angew Chem Int Ed Engl ; 63(24): e202405310, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38606567

RESUMEN

Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one-dimensional hybrid chiral manganese(II) chloride single crystals, R/S-(3-methyl piperidine)MnCl3 (R/S-1) and R/S-(3-hydroxy piperidine)MnCl3 (R/S-2), crystallizing in the non-centrosymmetric space group P212121. In comparison to R/S-1, R/S-2 single crystals not only show red emission with near-unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10-3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks between R/S-(3-hydroxy piperidine) cations and [MnCl6]4- chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4- luminophores induced by N-H⋅⋅⋅Cl hydrogen bonding with R/S-(3-hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light-emitting diodes and X-ray scintillators. This work shows a highly efficient photoluminescent Mn-based halide and offers a strategy for designing multifunctional chiral metal halides.

3.
Small ; 19(20): e2207769, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36799192

RESUMEN

The rolling-off phenomenon of device efficiency at high current density caused by quenching of luminescence in perovskite light-emitting diodes (PeLED) is challenging to be solved. Here, 2-amino-5-iodopyrazine (AIPZ) is dissolved in a mixed solvent of chlorobenzene (CB)/isopropanol (IPA) (7:3 volume ratio) for surface post-treatment of FAPbI3 perovskite film. The interaction of AIPZ and perovskite surface not only balances the charge injection but also passivates defects to enhance radiative recombination in PeLED. Therefore, the PeLED champion yields peak external quantum efficiency reaching 23.2% at the current density of 45 mA cm-2 with a radiance brightness of 290 W sr-1 m-2 . More importantly, the rolling-off of device efficiency is significantly reduced. The lowest rolling-off devices can maintain 80% of peak EQE (22.1%) at a high current density of 460 mA cm-2 , whereas the control device only retains 25% of the peak EQE value. This work provides an effective strategy to improve performance and reduce the EQE rolling-off of PeLED for practical application.

4.
Small ; 19(42): e2303821, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37328439

RESUMEN

It is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2 S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2 ) evolution. By adjusting the colloidal concentration of ZIS (ZIS-X, X = 0.09, 0.25, or 3.0 mg mL-1 ), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze-drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS-X colloids is evaluated, and the slightly aggregated ZIS-0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m-2 h-1 ). The charge-transfer/recombination dynamics are characterized by time-resolved photoluminescence (TRPL) spectroscopy, and ZIS-0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo-electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.

5.
J Phys Chem Lett ; 14(24): 5489-5496, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37289830

RESUMEN

Using ligand exchange on FAPbI3 perovskite nanocrystals (PNCs) surface with chiral tridentate l-cysteine (l-cys) ligand, we successfully prepared chiral FAPbI3 PNCs that show circularly polarized luminescence (CPL) (dissymmetry factor; glum = 2.1 × 10-3) in the near-infrared (NIR) region from 700 to 850 nm and a photoluminescence quantum yield (PLQY) of 81%. The chiral characteristics of FAPbI3 PNCs are ascribed to induction by chiral l/d-cys, and the high PLQY is attributed to the passivation of the PNCs defects with l-cys. Also, effective passivation of defects on the surface of FAPbI3 PNCs by l-cys results in excellent stability toward atmospheric water and oxygen. The conductivity of the l-cys treated FAPbI3 NC films is improved, which is attributed to the partial substitution of l-cys for the insulating long oleyl ligand. The CPL of the l-cys ligand treated FAPbI3 PNCs film retains a glum of -2.7 × 10-4. This study demonstrates a facile yet effective approach to generating chiral PNCs with CPL for NIR photonics applications.

6.
ACS Appl Mater Interfaces ; 15(22): 26778-26786, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219503

RESUMEN

The performance of the blue perovskite light-emitting diodes (PeLEDs) is limited by the low photoluminescence quantum yields (PLQYs) and the unstable emission centers. In this work, we incorporate sodium bromide and acesulfame potassium into a quasi-2D perovskite to control the dimension distribution and promote the PLQYs. Benefiting from the efficient energy cascade channel and passivation, the sky-blue PeLED has an external quantum efficiency of 9.7% and no shift of the electroluminescence center under operation voltages from 4 to 8 V. Moreover, the half lifetime of the devices reaches 325 s, 3.3 times that of control devices without additives. This work provides new insights into enhancing the performance of blue PeLEDs.

7.
Nanomicro Lett ; 15(1): 125, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188867

RESUMEN

Embedding submicrocavities is an effective approach to improve the light out-coupling efficiency (LOCE) for planar perovskite light-emitting diodes (PeLEDs). In this work, we employ phenethylammonium iodide (PEAI) to trigger the Ostwald ripening for the downward recrystallization of perovskite, resulting in spontaneous formation of buried submicrocavities as light output coupler. The simulation suggests the buried submicrocavities can improve the LOCE from 26.8 to 36.2% for near-infrared light. Therefore, PeLED yields peak external quantum efficiency (EQE) increasing from 17.3% at current density of 114 mA cm-2 to 25.5% at current density of 109 mA cm-2 and a radiance increasing from 109 to 487 W sr-1 m-2 with low rolling-off. The turn-on voltage decreased from 1.25 to 1.15 V at 0.1 W sr-1 m-2. Besides, downward recrystallization process slightly reduces the trap density from 8.90 × 1015 to 7.27 × 1015 cm-3. This work provides a self-assembly method to integrate buried output coupler for boosting the performance of PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA